文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于改进YOLOv4网络的钢轨表面缺陷检测研究

Research on steel rail surface defects detection based on improved YOLOv4 network.

作者信息

Mi Zengzhen, Chen Ren, Zhao Shanshan

机构信息

College of Mechanical Engineering, Chongqing University of Technology, Chongqing, China.

出版信息

Front Neurorobot. 2023 Feb 9;17:1119896. doi: 10.3389/fnbot.2023.1119896. eCollection 2023.


DOI:10.3389/fnbot.2023.1119896
PMID:36845065
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9947530/
Abstract

INTRODUCTION: The surface images of steel rails are extremely difficult to detect and recognize due to the presence of interference such as light changes and texture background clutter during the acquisition process. METHODS: To improve the accuracy of railway defects detection, a deep learning algorithm is proposed to detect the rail defects. Aiming at the problems of inconspicuous rail defects edges, small size and background texture interference, the rail region extraction, improved Retinex image enhancement, background modeling difference, and threshold segmentation are performed sequentially to obtain the segmentation map of defects. For the classification of defects, Res2Net and CBAM attention mechanism are introduced to improve the receptive field and small target position weights. The bottom-up path enhancement structure is removed from the PANet structure to reduce the parameter redundancy and enhance the feature extraction of small targets. RESULTS: The results show the average accuracy of rail defects detection reaches 92.68%, the recall rate reaches 92.33%, and the average detection time reaches an average of 0.068 s per image, which can meet the real-time of rail defects detection. DISCUSSION: Comparing the improved method with the mainstream target detection algorithms such as Faster RCNN, SSD, YOLOv3 and other algorithms, the improved YOLOv4 has excellent comprehensive performance for rail defects detection, the improved YOLOv4 model obviously better than several others in , , and F1 value, and can be well-applied to rail defect detection projects.

摘要

引言:由于在采集过程中存在诸如光照变化和纹理背景杂乱等干扰,钢轨的表面图像极难检测和识别。 方法:为提高铁路缺陷检测的准确性,提出一种深度学习算法来检测钢轨缺陷。针对钢轨缺陷边缘不明显、尺寸小以及背景纹理干扰等问题,依次进行钢轨区域提取、改进的Retinex图像增强、背景建模差分和阈值分割,以获得缺陷分割图。对于缺陷分类,引入Res2Net和CBAM注意力机制来扩大感受野并提高小目标位置权重。从PANet结构中移除自底向上路径增强结构,以减少参数冗余并增强小目标的特征提取。 结果:结果表明,钢轨缺陷检测的平均准确率达到92.68%,召回率达到92.33%,平均检测时间达到每张图像平均0.068 s,能够满足钢轨缺陷检测的实时性要求。 讨论:将改进后的方法与Faster RCNN、SSD、YOLOv3等主流目标检测算法进行比较,改进后的YOLOv4在钢轨缺陷检测方面具有出色的综合性能,改进后的YOLOv4模型在准确率、召回率和F1值方面明显优于其他几种算法,并且能够很好地应用于钢轨缺陷检测项目。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe7d/9947530/3f142f95074a/fnbot-17-1119896-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe7d/9947530/c406c6a5849b/fnbot-17-1119896-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe7d/9947530/a8bcc7b39644/fnbot-17-1119896-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe7d/9947530/4d55407af2bb/fnbot-17-1119896-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe7d/9947530/063d15da08ef/fnbot-17-1119896-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe7d/9947530/ad34ddf4d1c4/fnbot-17-1119896-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe7d/9947530/13d85c78448f/fnbot-17-1119896-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe7d/9947530/bea9ccfbfaa3/fnbot-17-1119896-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe7d/9947530/062ba4043e84/fnbot-17-1119896-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe7d/9947530/55e0ec203129/fnbot-17-1119896-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe7d/9947530/35663e213027/fnbot-17-1119896-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe7d/9947530/3f142f95074a/fnbot-17-1119896-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe7d/9947530/c406c6a5849b/fnbot-17-1119896-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe7d/9947530/a8bcc7b39644/fnbot-17-1119896-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe7d/9947530/4d55407af2bb/fnbot-17-1119896-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe7d/9947530/063d15da08ef/fnbot-17-1119896-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe7d/9947530/ad34ddf4d1c4/fnbot-17-1119896-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe7d/9947530/13d85c78448f/fnbot-17-1119896-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe7d/9947530/bea9ccfbfaa3/fnbot-17-1119896-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe7d/9947530/062ba4043e84/fnbot-17-1119896-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe7d/9947530/55e0ec203129/fnbot-17-1119896-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe7d/9947530/35663e213027/fnbot-17-1119896-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe7d/9947530/3f142f95074a/fnbot-17-1119896-g011.jpg

相似文献

[1]
Research on steel rail surface defects detection based on improved YOLOv4 network.

Front Neurorobot. 2023-2-9

[2]
A Study on Railway Surface Defects Detection Based on Machine Vision.

Entropy (Basel). 2021-10-30

[3]
Detection of Pine Wilt Nematode from Drone Images Using UAV.

Sensors (Basel). 2022-6-22

[4]
Improved YOLOv4-tiny based on attention mechanism for skin detection.

PeerJ Comput Sci. 2023-3-10

[5]
High Speed Railway Fastener Defect Detection by Using Improved YoLoX-Nano Model.

Sensors (Basel). 2022-11-1

[6]
A Defect Detection Method for Rail Surface and Fasteners Based on Deep Convolutional Neural Network.

Comput Intell Neurosci. 2021

[7]
A New Deep Model for Detecting Multiple Moving Targets in Real Traffic Scenarios: Machine Vision-Based Vehicles.

Sensors (Basel). 2022-5-14

[8]
Malaria parasite detection in thick blood smear microscopic images using modified YOLOV3 and YOLOV4 models.

BMC Bioinformatics. 2021-3-8

[9]
Nature-Inspired Search Method and Custom Waste Object Detection and Classification Model for Smart Waste Bin.

Sensors (Basel). 2022-8-18

[10]
Ensemble model for rail surface defects detection.

PLoS One. 2022

引用本文的文献

[1]
Editorial: Recent advances in image fusion and quality improvement for cyber-physical systems, volume II.

Front Neurorobot. 2024-5-29

[2]
Strip steel surface defect detection based on lightweight YOLOv5.

Front Neurorobot. 2023-10-4

本文引用的文献

[1]
MSFT-YOLO: Improved YOLOv5 Based on Transformer for Detecting Defects of Steel Surface.

Sensors (Basel). 2022-5-2

[2]
HADF-Crowd: A Hierarchical Attention-Based Dense Feature Extraction Network for Single-Image Crowd Counting.

Sensors (Basel). 2021-5-17

[3]
A fast technique for hyper-echoic region separation from brain ultrasound images using patch based thresholding and cubic B-spline based contour smoothing.

Ultrasonics. 2021-3

[4]
Res2Net: A New Multi-Scale Backbone Architecture.

IEEE Trans Pattern Anal Mach Intell. 2021-2

[5]
Squeeze-and-Excitation Networks.

IEEE Trans Pattern Anal Mach Intell. 2020-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索