Suppr超能文献

采用气相色谱-串联质谱法对不同生长时期和部位的地锦草中对伞花烃、百里香酚、乙酸橙花酯和β-石竹烯进行定量测定。

Quantitative Determination of -Cymene, Thymol, Neryl Acetate, and -Caryophyllene in Different Growth Periods and Parts of Turcz. by GC-MS/MS.

作者信息

Nan Guanjun, Zhang Lina, Liu Zhengzheng, Liu Yu, Du Yan, Zhao Hongwen, Zheng Hongxia, Lin Rong, Yang Guangde, Zheng Shaohua

机构信息

School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China.

Department of Pharmacology, Xi'an Jiaotong University, Xi'an 710061, China.

出版信息

J Anal Methods Chem. 2021 Aug 2;2021:2174667. doi: 10.1155/2021/2174667. eCollection 2021.

Abstract

Turcz. is a widely used Chinese herbal medicine in China. In this study, a gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS) method was developed and validated to simultaneously determine the contents of -cymene, thymol, neryl acetate, and -caryophyllene in roots, stems, and leaves of Turcz. harvested at different growth periods. All four constituents could be detected in leaves, three could be detected in stems except -caryophyllene, and only thymol could be detected in roots. The order of the total contents of four constituents in different parts was leaves > stems > roots. It indicated that the leaves could be the proper medicinal parts of Turcz. The content of four constituents in leaves varied a lot among different growth periods and showed an M-shaped change trend with the growth of Turcz. The four constituents accumulated to the highest values in early July followed by mid-September. Accordingly, the best harvest time of Turcz. is early July and mid-September.

摘要

地锦草是中国广泛使用的一种中药材。在本研究中,建立并验证了一种气相色谱-三重四极杆质谱(GC-MS/MS)方法,用于同时测定不同生长时期采收的地锦草的根、茎和叶中对伞花烃、百里香酚、乙酸橙花酯和β-石竹烯的含量。在叶中可检测到所有四种成分,在茎中除β-石竹烯外可检测到三种成分,而在根中仅能检测到百里香酚。不同部位四种成分的总含量顺序为叶>茎>根。这表明叶可能是地锦草合适的药用部位。叶中四种成分的含量在不同生长时期差异很大,并且随地锦草的生长呈M形变化趋势。这四种成分在7月初积累到最高值,其次是9月中旬。因此,地锦草的最佳采收时间是7月初和9月中旬。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/849c/8352711/854245375901/JAMC2021-2174667.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验