Suppr超能文献

相似文献

1
High-Throughput Corn Image Segmentation and Trait Extraction Using Chlorophyll Fluorescence Images.
Plant Phenomics. 2021 Jul 21;2021:9792582. doi: 10.34133/2021/9792582. eCollection 2021.
2
Stress Distribution Analysis on Hyperspectral Corn Leaf Images for Improved Phenotyping Quality.
Sensors (Basel). 2020 Jun 30;20(13):3659. doi: 10.3390/s20133659.
3
Comparison of feature point detectors for multimodal image registration in plant phenotyping.
PLoS One. 2019 Sep 30;14(9):e0221203. doi: 10.1371/journal.pone.0221203. eCollection 2019.
5
KAT4IA: -Means Assisted Training for Image Analysis of Field-Grown Plant Phenotypes.
Plant Phenomics. 2021 Aug 3;2021:9805489. doi: 10.34133/2021/9805489. eCollection 2021.
6
Quantitative Analysis of Cotton Canopy Size in Field Conditions Using a Consumer-Grade RGB-D Camera.
Front Plant Sci. 2018 Jan 30;8:2233. doi: 10.3389/fpls.2017.02233. eCollection 2017.
7
High-throughput phenotyping of lateral expansion and regrowth of spaced Lolium perenne plants using on-field image analysis.
Plant Methods. 2016 Jun 10;12:32. doi: 10.1186/s13007-016-0132-8. eCollection 2016.
8
4D Structural root architecture modeling from digital twins by X-Ray Computed Tomography.
Plant Methods. 2021 Dec 4;17(1):123. doi: 10.1186/s13007-021-00819-1.
9
Leveraging Image Analysis for High-Throughput Plant Phenotyping.
Front Plant Sci. 2019 Apr 24;10:508. doi: 10.3389/fpls.2019.00508. eCollection 2019.
10
Field-based individual plant phenotyping of herbaceous species by unmanned aerial vehicle.
Ecol Evol. 2020 Oct 19;10(21):12318-12326. doi: 10.1002/ece3.6861. eCollection 2020 Nov.

引用本文的文献

1
Classification of tomato seedling chilling injury based on chlorophyll fluorescence imaging and DBO-BiLSTM.
Front Plant Sci. 2024 Sep 9;15:1409200. doi: 10.3389/fpls.2024.1409200. eCollection 2024.
3
Quantification of Photosynthetic Pigments in Using Hyperspectral Imagery.
Plant Phenomics. 2023;5:0012. doi: 10.34133/plantphenomics.0012. Epub 2023 Jan 10.
4
PhenoTrack3D: an automatic high-throughput phenotyping pipeline to track maize organs over time.
Plant Methods. 2022 Dec 8;18(1):130. doi: 10.1186/s13007-022-00961-4.
5
The field phenotyping platform's next darling: Dicotyledons.
Front Plant Sci. 2022 Aug 24;13:935748. doi: 10.3389/fpls.2022.935748. eCollection 2022.

本文引用的文献

1
Voxel carving-based 3D reconstruction of sorghum identifies genetic determinants of light interception efficiency.
Plant Direct. 2020 Oct 7;4(10):e00255. doi: 10.1002/pld3.255. eCollection 2020 Oct.
2
Pot size matters: a meta-analysis of the effects of rooting volume on plant growth.
Funct Plant Biol. 2012 Nov;39(11):839-850. doi: 10.1071/FP12049.
3
Evaluating maize phenotype dynamics under drought stress using terrestrial lidar.
Plant Methods. 2019 Feb 4;15:11. doi: 10.1186/s13007-019-0396-x. eCollection 2019.
4
Holistic and component plant phenotyping using temporal image sequence.
Plant Methods. 2018 May 10;14:35. doi: 10.1186/s13007-018-0303-x. eCollection 2018.
5
Leaf-rolling in maize crops: from leaf scoring to canopy-level measurements for phenotyping.
J Exp Bot. 2018 Apr 27;69(10):2705-2716. doi: 10.1093/jxb/ery071.
6
Morphological responses of plant roots to mechanical stress.
Ann Bot. 2018 Nov 3;122(5):711-723. doi: 10.1093/aob/mcy010.
7
8
Differential manipulation of leaf angle throughout the canopy: current status and prospects.
J Exp Bot. 2017 Dec 16;68(21-22):5699-5717. doi: 10.1093/jxb/erx378.
9
High-Throughput Phenotyping and QTL Mapping Reveals the Genetic Architecture of Maize Plant Growth.
Plant Physiol. 2017 Mar;173(3):1554-1564. doi: 10.1104/pp.16.01516. Epub 2017 Jan 30.
10
Growing sensitivity of maize to water scarcity under climate change.
Sci Rep. 2016 Jan 25;6:19605. doi: 10.1038/srep19605.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验