Suppr超能文献

通过X射线计算机断层扫描从数字双胞胎进行4D结构根系建模。

4D Structural root architecture modeling from digital twins by X-Ray Computed Tomography.

作者信息

Herrero-Huerta Monica, Meline Valerian, Iyer-Pascuzzi Anjali S, Souza Augusto M, Tuinstra Mitchell R, Yang Yang

机构信息

Institute for Plant Sciences, College of Agriculture, Purdue University, West Lafayette, IN, USA.

Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA.

出版信息

Plant Methods. 2021 Dec 4;17(1):123. doi: 10.1186/s13007-021-00819-1.

Abstract

BACKGROUND

Breakthrough imaging technologies may challenge the plant phenotyping bottleneck regarding marker-assisted breeding and genetic mapping. In this context, X-Ray CT (computed tomography) technology can accurately obtain the digital twin of root system architecture (RSA) but computational methods to quantify RSA traits and analyze their changes over time are limited. RSA traits extremely affect agricultural productivity. We develop a spatial-temporal root architectural modeling method based on 4D data from X-ray CT. This novel approach is optimized for high-throughput phenotyping considering the cost-effective time to process the data and the accuracy and robustness of the results. Significant root architectural traits, including root elongation rate, number, length, growth angle, height, diameter, branching map, and volume of axial and lateral roots are extracted from the model based on the digital twin. Our pipeline is divided into two major steps: (i) first, we compute the curve-skeleton based on a constrained Laplacian smoothing algorithm. This skeletal structure determines the registration of the roots over time; (ii) subsequently, the RSA is robustly modeled by a cylindrical fitting to spatially quantify several traits. The experiment was carried out at the Ag Alumni Seed Phenotyping Facility (AAPF) from Purdue University in West Lafayette (IN, USA).

RESULTS

Roots from three samples of tomato plants at two different times and three samples of corn plants at three different times were scanned. Regarding the first step, the PCA analysis of the skeleton is able to accurately and robustly register temporal roots. From the second step, several traits were computed. Two of them were accurately validated using the root digital twin as a ground truth against the cylindrical model: number of branches (RRMSE better than 9%) and volume, reaching a coefficient of determination (R) of 0.84 and a P < 0.001.

CONCLUSIONS

The experimental results support the viability of the developed methodology, being able to provide scalability to a comprehensive analysis in order to perform high throughput root phenotyping.

摘要

背景

突破性的成像技术可能会挑战标记辅助育种和基因定位方面的植物表型分析瓶颈。在这种情况下,X射线计算机断层扫描(CT)技术可以准确获取根系结构(RSA)的数字孪生模型,但用于量化RSA性状并分析其随时间变化的计算方法有限。RSA性状对农业生产力有极大影响。我们基于X射线CT的4D数据开发了一种时空根系结构建模方法。考虑到处理数据的成本效益时间以及结果的准确性和稳健性,这种新方法针对高通量表型分析进行了优化。基于数字孪生模型,从模型中提取了重要的根系结构性状,包括根伸长率、数量、长度、生长角度、高度、直径、分支图以及轴向和侧根的体积。我们的流程分为两个主要步骤:(i)首先,我们基于约束拉普拉斯平滑算法计算曲线骨架。这种骨架结构决定了根系随时间的配准;(ii)随后,通过圆柱拟合对RSA进行稳健建模,以在空间上量化多个性状。实验在美国印第安纳州西拉斐特普渡大学的农业校友种子表型分析设施(AAPF)进行。

结果

对两个不同时间的三个番茄植株样本的根系以及三个不同时间的三个玉米植株样本的根系进行了扫描。关于第一步,骨架的主成分分析(PCA)能够准确且稳健地配准不同时间的根系。从第二步中,计算了多个性状。其中两个性状使用根系数字孪生模型作为地面真值与圆柱模型进行了准确验证:分支数量(相对均方根误差RRMSE优于9%)和体积,决定系数(R)达到0.84且P < 0.001。

结论

实验结果支持了所开发方法的可行性,能够为进行高通量根系表型分析的综合分析提供可扩展性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2065/8642944/e4497263cbf3/13007_2021_819_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验