Suppr超能文献

基于深度学习分割的光学相干断层扫描血管造影术改善脑微血管图像质量。

Improving cerebral microvascular image quality of optical coherence tomography angiography with deep learning-based segmentation.

机构信息

Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing, China.

Beijing Laboratory for Biomedical Detection Technology and Instrument, Beijing Information Science and Technology University, Beijing, China.

出版信息

J Biophotonics. 2021 Nov;14(11):e202100171. doi: 10.1002/jbio.202100171. Epub 2021 Aug 18.

Abstract

Optical coherence tomography angiography (OCTA) can map the microvascular networks of the cerebral cortices with micrometer resolution and millimeter penetration. However, the high scattering of the skull and the strong noise in the deep imaging region will distort the vasculature projections and decrease the OCTA image quality. Here, we proposed a deep learning-based segmentation method based on a U-Net convolutional neural network to extract the cortical region from the OCT image. The vascular networks were then visualized by three OCTA algorithms. The image quality of the vasculature projections was assessed by two metrics, including the peak signal-to-noise ratio (PSNR) and the contrast-to-noise ratio (CNR). The results show the accuracy of the cortical segmentation was 96.07%. The PSNR and CNR values increased significantly in the projections of the selected cortical regions. The OCTA incorporating the deep learning-based cortical segmentation can efficiently improve the image quality and enhance the vasculature clarity.

摘要

光学相干断层扫描血管造影术 (OCTA) 可以以微米分辨率和毫米穿透深度绘制大脑皮质的微血管网络。然而,颅骨的高散射和深层成像区域的强噪声会扭曲血管投影并降低 OCTA 图像质量。在这里,我们提出了一种基于 U-Net 卷积神经网络的深度学习分割方法,从 OCT 图像中提取皮质区域。然后通过三种 OCTA 算法可视化血管网络。通过两个指标评估血管投影的图像质量,包括峰值信噪比 (PSNR) 和对比噪声比 (CNR)。结果表明,皮质分割的准确性为 96.07%。在选定皮质区域的投影中,PSNR 和 CNR 值显著增加。结合基于深度学习的皮质分割的 OCTA 可以有效地提高图像质量并增强血管清晰度。

相似文献

1
Improving cerebral microvascular image quality of optical coherence tomography angiography with deep learning-based segmentation.
J Biophotonics. 2021 Nov;14(11):e202100171. doi: 10.1002/jbio.202100171. Epub 2021 Aug 18.
2
A deep learning based pipeline for optical coherence tomography angiography.
J Biophotonics. 2019 Oct;12(10):e201900008. doi: 10.1002/jbio.201900008. Epub 2019 Jul 1.
3
Deep-learning-based motion correction in optical coherence tomography angiography.
J Biophotonics. 2021 Dec;14(12):e202100097. doi: 10.1002/jbio.202100097. Epub 2021 Aug 3.
4
Automated Segmentation of Retinal Fluid Volumes From Structural and Angiographic Optical Coherence Tomography Using Deep Learning.
Transl Vis Sci Technol. 2020 Oct 8;9(2):54. doi: 10.1167/tvst.9.2.54. eCollection 2020 Oct.
5
Automated OCT angiography image quality assessment using a deep learning algorithm.
Graefes Arch Clin Exp Ophthalmol. 2019 Aug;257(8):1641-1648. doi: 10.1007/s00417-019-04338-7. Epub 2019 May 22.
6
Quantitative assessment of optical coherence tomography angiography algorithms for neuroimaging.
J Biophotonics. 2020 Sep;13(9):e202000181. doi: 10.1002/jbio.202000181. Epub 2020 Jun 29.
7
Automated Segmentation of Optical Coherence Tomography Angiography Images: Benchmark Data and Clinically Relevant Metrics.
Transl Vis Sci Technol. 2020 Dec 3;9(13):5. doi: 10.1167/tvst.9.13.5. eCollection 2020 Dec.
8
Retinal OCTA Image Segmentation Based on Global Contrastive Learning.
Sensors (Basel). 2022 Dec 14;22(24):9847. doi: 10.3390/s22249847.
9
Deep-learning visualization enhancement method for optical coherence tomography angiography in dermatology.
J Biophotonics. 2023 Oct;16(10):e202200366. doi: 10.1002/jbio.202200366. Epub 2023 Jul 15.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验