Usher Institute, University of Edinburgh, Edinburgh, UK.
Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh, UK.
Transl Vis Sci Technol. 2020 Dec 3;9(13):5. doi: 10.1167/tvst.9.13.5. eCollection 2020 Dec.
To generate the first open dataset of retinal parafoveal optical coherence tomography angiography (OCTA) images with associated ground truth manual segmentations, and to establish a standard for OCTA image segmentation by surveying a broad range of state-of-the-art vessel enhancement and binarization procedures.
Handcrafted filters and neural network architectures were used to perform vessel enhancement. Thresholding methods and machine learning approaches were applied to obtain the final binarization. Evaluation was performed by using pixelwise metrics and newly proposed topological metrics. Finally, we compare the error in the computation of clinically relevant vascular network metrics (e.g., foveal avascular zone area and vessel density) across segmentation methods.
Our results show that, for the set of images considered, deep learning architectures (U-Net and CS-Net) achieve the best performance (Dice = 0.89). For applications where manually segmented data are not available to retrain these approaches, our findings suggest that optimally oriented flux (OOF) is the best handcrafted filter (Dice = 0.86). Moreover, our results show up to 25% differences in vessel density accuracy depending on the segmentation method used.
In this study, we derive and validate the first open dataset of retinal parafoveal OCTA images with associated ground truth manual segmentations. Our findings should be taken into account when comparing the results of clinical studies and performing meta-analyses. Finally, we release our data and source code to support standardization efforts in OCTA image segmentation.
This work establishes a standard for OCTA retinal image segmentation and introduces the importance of evaluating segmentation performance in terms of clinically relevant metrics.
生成首个带有相关手动分割ground truth 的视网膜旁中心凹光相干断层扫描血管造影(OCTA)图像的公开数据集,并通过调查广泛的最新血管增强和二值化处理方法,为 OCTA 图像分割建立标准。
使用手工制作的滤波器和神经网络架构进行血管增强。应用阈值方法和机器学习方法来获得最终的二值化。通过使用像素级指标和新提出的拓扑指标进行评估。最后,我们比较了不同分割方法计算临床相关血管网络指标(例如,中心凹无血管区面积和血管密度)的误差。
我们的结果表明,在所考虑的图像集中,深度学习架构(U-Net 和 CS-Net)表现最佳(Dice = 0.89)。对于无法获取手动分割数据来重新训练这些方法的应用,我们的研究结果表明,最佳定向流量(OOF)是最好的手工滤波器(Dice = 0.86)。此外,我们的结果表明,根据使用的分割方法,血管密度的准确性差异可达 25%。
在这项研究中,我们推导出并验证了首个带有相关手动分割 ground truth 的视网膜旁中心凹 OCTA 图像的公开数据集。在比较临床研究结果和进行荟萃分析时,应考虑我们的发现。最后,我们发布了我们的数据和源代码,以支持 OCTA 图像分割的标准化工作。
翻译是否准确,取决于原文的专业性和严谨性,欢迎各位指正。