Suppr超能文献

基于深度学习的光学相干断层扫描血管造影运动校正。

Deep-learning-based motion correction in optical coherence tomography angiography.

机构信息

Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA.

出版信息

J Biophotonics. 2021 Dec;14(12):e202100097. doi: 10.1002/jbio.202100097. Epub 2021 Aug 3.

Abstract

Optical coherence tomography angiography (OCTA) is a widely applied tool to image microvascular networks with high spatial resolution and sensitivity. Due to limited imaging speed, the artifacts caused by tissue motion can severely compromise visualization of the microvascular networks and quantification of OCTA images. In this article, we propose a deep-learning-based framework to effectively correct motion artifacts and retrieve microvascular architectures. This method comprised two deep neural networks in which the first subnet was applied to distinguish motion corrupted B-scan images from a volumetric dataset. Based on the classification results, the artifacts could be removed from the en face maximum-intensity-projection (MIP) OCTA image. To restore the disturbed vasculature induced by artifact removal, the second subnet, an inpainting neural network, was utilized to reconnect the broken vascular networks. We applied the method to postprocess OCTA images of the microvascular networks in mouse cortex in vivo. Both image comparison and quantitative analysis show that the proposed method can significantly improve OCTA image by efficiently recovering microvasculature from the overwhelming motion artifacts.

摘要

光学相干断层扫描血管造影术(OCTA)是一种广泛应用的工具,可用于以高空间分辨率和灵敏度成像微血管网络。由于成像速度有限,组织运动引起的伪影会严重影响微血管网络的可视化和 OCTA 图像的定量分析。在本文中,我们提出了一种基于深度学习的框架,以有效校正运动伪影并恢复微血管结构。该方法包括两个深度神经网络,其中第一个子网用于从体积数据集区分运动伪影的 B 扫描图像。基于分类结果,可以从血管层积最大强度投影(MIP)OCTA 图像中去除伪影。为了恢复artifact 去除引起的紊乱血管,使用第二个子网,即补全神经网络,重新连接断裂的血管网络。我们将该方法应用于活体小鼠皮层微血管网络的 OCTA 图像后处理。图像比较和定量分析均表明,该方法可以通过从大量运动伪影中有效恢复微血管来显著改善 OCTA 图像。

相似文献

1
Deep-learning-based motion correction in optical coherence tomography angiography.
J Biophotonics. 2021 Dec;14(12):e202100097. doi: 10.1002/jbio.202100097. Epub 2021 Aug 3.
2
Automated motion-artifact correction in an OCTA image using tensor voting approach.
Appl Phys Lett. 2018 Sep 3;113(10):101102. doi: 10.1063/1.5036965. Epub 2018 Sep 4.
3
Motion Artifact Correction for OCT Microvascular Images Based on Image Feature Matching.
J Biophotonics. 2024 Oct;17(10):e202400198. doi: 10.1002/jbio.202400198. Epub 2024 Aug 28.
4
Improving cerebral microvascular image quality of optical coherence tomography angiography with deep learning-based segmentation.
J Biophotonics. 2021 Nov;14(11):e202100171. doi: 10.1002/jbio.202100171. Epub 2021 Aug 18.
6
Automated OCT angiography image quality assessment using a deep learning algorithm.
Graefes Arch Clin Exp Ophthalmol. 2019 Aug;257(8):1641-1648. doi: 10.1007/s00417-019-04338-7. Epub 2019 May 22.
7
A hand-held optical coherence tomography angiography scanner based on angiography reconstruction transformer networks.
J Biophotonics. 2023 Sep;16(9):e202300100. doi: 10.1002/jbio.202300100. Epub 2023 Jun 16.
8
Compressive-sensing swept-source optical coherence tomography angiography with reduced noise.
J Biophotonics. 2022 Aug;15(8):e202200087. doi: 10.1002/jbio.202200087. Epub 2022 May 22.
10
A deep learning method for eliminating head motion artifacts in computed tomography.
Med Phys. 2022 Jan;49(1):411-419. doi: 10.1002/mp.15354. Epub 2021 Dec 10.

引用本文的文献

1
Wearable optical coherence tomography angiography probe for freely moving mice.
Biomed Opt Express. 2023 Nov 28;14(12):6509-6520. doi: 10.1364/BOE.506513. eCollection 2023 Dec 1.
2
Feasibility of deep learning-based polarization-sensitive optical coherence tomography angiography for imaging cutaneous microvasculature.
Biomed Opt Express. 2023 Jul 5;14(8):3856-3870. doi: 10.1364/BOE.488822. eCollection 2023 Aug 1.

本文引用的文献

1
Comparative study of deep learning models for optical coherence tomography angiography.
Biomed Opt Express. 2020 Feb 26;11(3):1580-1597. doi: 10.1364/BOE.387807. eCollection 2020 Mar 1.
2
In vivo detection of tumor boundary using ultrahigh-resolution optical coherence angiography and fluorescence imaging.
J Biophotonics. 2020 Mar;13(3):e201960091. doi: 10.1002/jbio.201960091. Epub 2019 Dec 23.
3
Automated motion-artifact correction in an OCTA image using tensor voting approach.
Appl Phys Lett. 2018 Sep 3;113(10):101102. doi: 10.1063/1.5036965. Epub 2018 Sep 4.
5
Automated segmentation and quantification of OCT angiography for tracking angiogenesis progression.
Biomed Opt Express. 2017 Nov 14;8(12):5604-5616. doi: 10.1364/BOE.8.005604. eCollection 2017 Dec 1.
7
Evaluation of artifact reduction in optical coherence tomography angiography with real-time tracking and motion correction technology.
Biomed Opt Express. 2016 Sep 6;7(10):3905-3915. doi: 10.1364/BOE.7.003905. eCollection 2016 Oct 1.
8
Phase-stable swept source OCT angiography in human skin using an akinetic source.
Biomed Opt Express. 2016 Jul 12;7(8):3032-48. doi: 10.1364/BOE.7.003032. eCollection 2016 Aug 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验