Suppr超能文献

随机Lotka-Volterra食物链。

Stochastic Lotka-Volterra food chains.

作者信息

Hening Alexandru, Nguyen Dang H

机构信息

Department of Mathematics, Tufts University, Bromfield-Pearson Hall, 503 Boston Avenue, Medford, MA, 02155, USA.

Department of Mathematics, Wayne State University, Detroit, MI, 48202, USA.

出版信息

J Math Biol. 2018 Jul;77(1):135-163. doi: 10.1007/s00285-017-1192-8. Epub 2017 Nov 17.

Abstract

We study the persistence and extinction of species in a simple food chain that is modelled by a Lotka-Volterra system with environmental stochasticity. There exist sharp results for deterministic Lotka-Volterra systems in the literature but few for their stochastic counterparts. The food chain we analyze consists of one prey and [Formula: see text] predators. The jth predator eats the [Formula: see text]th species and is eaten by the [Formula: see text]th predator; this way each species only interacts with at most two other species-the ones that are immediately above or below it in the trophic chain. We show that one can classify, based on an explicit quantity depending on the interaction coefficients of the system, which species go extinct and which converge to their unique invariant probability measure. Our work can be seen as a natural extension of the deterministic results of Gard and Hallam '79 to a stochastic setting. As one consequence we show that environmental stochasticity makes species more likely to go extinct. However, if the environmental fluctuations are small, persistence in the deterministic setting is preserved in the stochastic system. Our analysis also shows that the addition of a new apex predator makes, as expected, the different species more prone to extinction. Another novelty of our analysis is the fact that we can describe the behavior of the system when the noise is degenerate. This is relevant because of the possibility of strong correlations between the effects of the environment on the different species.

摘要

我们研究了由具有环境随机性的Lotka-Volterra系统建模的简单食物链中物种的持久性和灭绝情况。文献中对于确定性Lotka-Volterra系统有明确的结果,但对于其随机对应系统的结果较少。我们分析的食物链由一种猎物和[公式:见正文]种捕食者组成。第j个捕食者以第[公式:见正文]个物种为食,并被第[公式:见正文]个捕食者捕食;这样每个物种最多只与另外两个物种相互作用——即在营养链中紧挨着它上面或下面的物种。我们表明,基于一个明确的量(取决于系统的相互作用系数),可以对哪些物种会灭绝以及哪些物种会收敛到其唯一的不变概率测度进行分类。我们的工作可以看作是将Gard和Hallam 1979年的确定性结果自然地扩展到了随机环境。作为一个结果,我们表明环境随机性使物种更有可能灭绝。然而,如果环境波动较小,确定性环境中的持久性在随机系统中得以保留。我们的分析还表明,正如预期的那样,添加一个新的顶级捕食者会使不同物种更容易灭绝。我们分析的另一个新颖之处在于,当噪声退化时我们能够描述系统的行为。这一点很重要,因为环境对不同物种的影响之间可能存在强相关性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验