胶态稳定的 DSPE-PEG-葡萄糖/磷酸钙杂化纳米复合材料通过互补的线粒体钙超载和自噬抑制增强光动力癌症治疗。

Colloidally Stabilized DSPE-PEG-Glucose/Calcium Phosphate Hybrid Nanocomposites for Enhanced Photodynamic Cancer Therapy via Complementary Mitochondrial Ca Overload and Autophagy Inhibition.

机构信息

CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, P. R. China.

University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2021 Aug 25;13(33):39112-39125. doi: 10.1021/acsami.1c11583. Epub 2021 Aug 12.

Abstract

Autophagy inhibition could hinder the underlying protective mechanisms in the course of tumor treatment. The advances in autophagy inhibition have driven focus on the functionalized nanoplatforms by combining the current treatment paradigms with complementary autophagy inhibition for enhanced efficacy. Furthermore, Ca overload is also a promising adjuvant target for the tumor treatment by augmenting mitochondrial damage. In this view, complementary mitochondrial Ca overload and autophagy inhibition were first demonstrated as a novel strategy suitable for homing in on the shortage of photodynamic therapy (PDT). We constructed biodegradable tumor-targeted inorganic/organic hybrid nanocomposites (DPGC/OI) synchronously encapsulating IR780 and Obatoclax by biomineralization of the nanofilm method, which consists of pH-triggered calcium phosphate (CP), long circulation phospholipid block copolymers 1,2-distearoyl--glycero-3-phosphoethanolamine (DSPE)-poly(ethylene glycol) (PEG)2000-glucose (DPG). In the presence of the hydrophilic PEG chain and glucose transporter 1 (Glut-1) ligands, DPGC would become an effectively tumor-oriented nanoplatform. Subsequently, IR780 as an outstanding photosensitizer could produce increased amounts of toxic reactive oxygen species (ROS) after laser irradiation. Calcium phosphate (CP) as the Ca nanogenerator could generate Ca at low pH to induce mitochondrial Ca overload. The dysfunction of mitochondria could enhance increased amounts of ROS. Based on the premise that autophagy would degrade dysfunctional organelles to sustain metabolism and homeostasis, which might participate in resistance to PDT, Obatoclax as an autophagy inhibitor would hinder the protective mechanism from cancer cells with negligible toxicity. Such an enhanced PDT via mitochondrial Ca overload and autophagy inhibition could be realized by DPGC/OI.

摘要

自噬抑制可能会阻碍肿瘤治疗过程中的潜在保护机制。自噬抑制的进展促使人们将功能化的纳米平台与当前的治疗模式相结合,通过互补的自噬抑制来提高疗效。此外,钙超载也可以通过增加线粒体损伤成为肿瘤治疗的一个有前途的辅助靶点。在这种情况下,互补的线粒体钙超载和自噬抑制首次被证明是一种适用于针对光动力疗法(PDT)不足的新策略。我们通过纳米薄膜法的生物矿化同步包封 IR780 和 Obatoclax 构建了可生物降解的肿瘤靶向无机/有机杂化纳米复合材料(DPGC/OI),该纳米复合材料由 pH 触发的磷酸钙(CP)、长循环磷脂嵌段共聚物 1,2-二硬脂酰基-甘油-3-磷酸乙醇胺(DSPE)-聚乙二醇(PEG)2000-葡萄糖(DPG)组成。在亲水性 PEG 链和葡萄糖转运蛋白 1(Glut-1)配体的存在下,DPGC 将成为一种有效的肿瘤靶向纳米平台。随后,IR780 作为一种优秀的光敏剂,在激光照射后可以产生更多的有毒活性氧(ROS)。磷酸钙(CP)作为钙纳米发生器,可以在低 pH 值下产生钙,诱导线粒体钙超载。线粒体功能障碍会增强 ROS 的产生。基于自噬会降解功能失调的细胞器以维持代谢和内稳态的前提,自噬可能参与对 PDT 的抵抗,Obatoclax 作为自噬抑制剂,几乎没有毒性,可以阻碍癌细胞的保护机制。通过 DPGC/OI 可以实现通过线粒体钙超载和自噬抑制增强的 PDT。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索