文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Manipulating calcium homeostasis with nanoplatforms for enhanced cancer therapy.

作者信息

Feng Yanlin, Wang Jianlin, Cao Jimin, Cao Fangfang, Chen Xiaoyuan

机构信息

Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology Shanxi Medical University Taiyuan China.

Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering National University of Singapore Singapore Singapore.

出版信息

Exploration (Beijing). 2023 Oct 10;4(1):20230019. doi: 10.1002/EXP.20230019. eCollection 2024 Feb.


DOI:10.1002/EXP.20230019
PMID:38854493
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10867402/
Abstract

Calcium ions (Ca) are indispensable and versatile metal ions that play a pivotal role in regulating cell metabolism, encompassing cell survival, proliferation, migration, and gene expression. Aberrant Ca levels are frequently linked to cell dysfunction and a variety of pathological conditions. Therefore, it is essential to maintain Ca homeostasis to coordinate body function. Disrupting the balance of Ca levels has emerged as a potential therapeutic strategy for various diseases, and there has been extensive research on integrating this approach into nanoplatforms. In this review, the current nanoplatforms that regulate Ca homeostasis for cancer therapy are first discussed, including both direct and indirect approaches to manage Ca overload or inhibit Ca signalling. Then, the applications of these nanoplatforms in targeting different cells to regulate their Ca homeostasis for achieving therapeutic effects in cancer treatment are systematically introduced, including tumour cells and immune cells. Finally, perspectives on the further development of nanoplatforms for regulating Ca homeostasis, identifying scientific limitations and future directions for exploitation are offered.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/a6c28feaae1e/EXP2-4-20230019-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/067fcaba9c61/EXP2-4-20230019-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/37d49ea87bee/EXP2-4-20230019-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/9628e2172133/EXP2-4-20230019-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/c6e9d73d15ca/EXP2-4-20230019-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/4cea5e6d03e7/EXP2-4-20230019-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/cb840358ce6a/EXP2-4-20230019-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/d2431d2a0ba3/EXP2-4-20230019-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/41ea52c2f82e/EXP2-4-20230019-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/f429a2576106/EXP2-4-20230019-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/7b8ca1371cb8/EXP2-4-20230019-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/43b57d607289/EXP2-4-20230019-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/ca86a708dc41/EXP2-4-20230019-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/fbfc1c473c84/EXP2-4-20230019-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/7a1be64f086d/EXP2-4-20230019-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/ebcbeca9dfb8/EXP2-4-20230019-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/357c2cff28e8/EXP2-4-20230019-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/0c381d6625c9/EXP2-4-20230019-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/ae456882729a/EXP2-4-20230019-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/a6c28feaae1e/EXP2-4-20230019-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/067fcaba9c61/EXP2-4-20230019-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/37d49ea87bee/EXP2-4-20230019-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/9628e2172133/EXP2-4-20230019-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/c6e9d73d15ca/EXP2-4-20230019-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/4cea5e6d03e7/EXP2-4-20230019-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/cb840358ce6a/EXP2-4-20230019-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/d2431d2a0ba3/EXP2-4-20230019-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/41ea52c2f82e/EXP2-4-20230019-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/f429a2576106/EXP2-4-20230019-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/7b8ca1371cb8/EXP2-4-20230019-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/43b57d607289/EXP2-4-20230019-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/ca86a708dc41/EXP2-4-20230019-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/fbfc1c473c84/EXP2-4-20230019-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/7a1be64f086d/EXP2-4-20230019-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/ebcbeca9dfb8/EXP2-4-20230019-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/357c2cff28e8/EXP2-4-20230019-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/0c381d6625c9/EXP2-4-20230019-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/ae456882729a/EXP2-4-20230019-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0649/10867402/a6c28feaae1e/EXP2-4-20230019-g003.jpg

相似文献

[1]
Manipulating calcium homeostasis with nanoplatforms for enhanced cancer therapy.

Exploration (Beijing). 2023-10-10

[2]
Nanoplatform-mediated calcium overload for cancer therapy.

J Mater Chem B. 2022-3-9

[3]
Biomimetic Ca nanogenerator based on ions interference strategy for tumour-specific therapy.

J Drug Target. 2021-12

[4]
Nano-modulators with the function of disrupting mitochondrial Ca homeostasis and photothermal conversion for synergistic breast cancer therapy.

J Nanobiotechnology. 2023-12-4

[5]
HO Self-Supplying CaO Nanoplatform Induces Ca Overload Combined with Chemodynamic Therapy to Enhance Cancer Immunotherapy.

ACS Appl Mater Interfaces. 2024-10-30

[6]
Colloidally Stabilized DSPE-PEG-Glucose/Calcium Phosphate Hybrid Nanocomposites for Enhanced Photodynamic Cancer Therapy via Complementary Mitochondrial Ca Overload and Autophagy Inhibition.

ACS Appl Mater Interfaces. 2021-8-25

[7]
A metal-organic framework functionalized CaO-based cascade nanoreactor induces synergistic cuproptosis/ferroptosis and Ca overload-mediated mitochondrial damage for enhanced sono-chemodynamic immunotherapy.

Acta Biomater. 2025-1-24

[8]
New Ca based anticancer nanomaterials trigger multiple cell death targeting Ca homeostasis for cancer therapy.

Chem Biol Interact. 2024-4-25

[9]
Immune-regulating camouflaged nanoplatforms: A promising strategy to improve cancer nano-immunotherapy.

Bioact Mater. 2022-8-10

[10]
Hybrid Cell Membrane-Based Nanoplatforms for Enhanced Immunotherapy against Cancer and Infectious Diseases.

Adv Healthc Mater. 2024-7

引用本文的文献

[1]
Piezo1-Mediated Ferroptosis Delays Wound Healing in Aging Mice by Regulating the Transcriptional Activity of SLC7A11 through Activating Transcription Factor 3.

Research (Wash D C). 2025-6-3

[2]
Functional hydrogel empowering 3D printing titanium alloys.

Mater Today Bio. 2024-12-24

[3]
Tailoring cell-inspired biomaterials to fuel cancer therapy.

Mater Today Bio. 2024-12-6

[4]
Polyphenolic Nanomedicine Regulating Mitochondria REDOX for Innovative Cancer Treatment.

Pharmaceutics. 2024-7-23

[5]
Preparation and Characterization Evaluation of Poly(L-Glutamic Acid)--Methoxy Poly(Ethylene Glycol)/Combretastatin A4/BLZ945 Nanoparticles for Cervical Cancer Therapy.

Int J Nanomedicine. 2023

本文引用的文献

[1]
Mineralized Porphyrin Metal-Organic Framework for Improved Tumor Elimination and Combined Immunotherapy.

ACS Nano. 2023-7-11

[2]
A General Biomineralization Strategy to Synthesize Autologous Cancer Vaccines with cGAS-STING Activating Capacity for Postsurgical Immunotherapy.

ACS Nano. 2023-6-13

[3]
Mace-Like Plasmonic Au-Pd Heterostructures Boost Near-Infrared Photoimmunotherapy.

Adv Sci (Weinh). 2023-2

[4]
Colon cancer exosome-derived biomimetic nanoplatform for curcumin-mediated sonodynamic therapy and calcium overload.

Front Bioeng Biotechnol. 2022-11-15

[5]
Disulfiram loaded calcium phosphate nanoparticles for enhanced cancer immunotherapy.

Biomaterials. 2022-12

[6]
Cell Membrane-Anchoring Nano-Photosensitizer for Light-Controlled Calcium-Overload and Tumor-Specific Synergistic Therapy.

Small. 2022-12

[7]
Metal-organic framework combined with CaO nanoparticles for enhanced and targeted photodynamic therapy.

Nanoscale Adv. 2021-9-18

[8]
A Calcium Fluoride Nanozyme for Ultrasound-Amplified and Ca -Overload-Enhanced Catalytic Tumor Nanotherapy.

Adv Mater. 2022-10

[9]
L-buthionine sulfoximine encapsulated hollow calcium peroxide as a chloroperoxidase nanocarrier for enhanced enzyme dynamic therapy.

Biomaterials. 2022-10

[10]
Oncocyte Membrane-Camouflaged Multi-Stimuli-Responsive Nanohybrids for Synergistic Amplification of Tumor Oxidative Stresses and Photothermal Enhanced Cancer Therapy.

ACS Appl Mater Interfaces. 2022-9-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索