文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于线粒体靶向光动力和光热疗法的菁染料

Cyanine dyes in the mitochondria-targeting photodynamic and photothermal therapy.

作者信息

Kejík Zdeněk, Hajduch Jan, Abramenko Nikita, Vellieux Frédéric, Veselá Kateřina, Fialová Jindřiška Leischner, Petrláková Kateřina, Kučnirová Kateřina, Kaplánek Robert, Tatar Ameneh, Skaličková Markéta, Masařík Michal, Babula Petr, Dytrych Petr, Hoskovec David, Martásek Pavel, Jakubek Milan

机构信息

BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic.

Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.

出版信息

Commun Chem. 2024 Aug 13;7(1):180. doi: 10.1038/s42004-024-01256-6.


DOI:10.1038/s42004-024-01256-6
PMID:39138299
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11322665/
Abstract

Mitochondrial dysregulation plays a significant role in the carcinogenesis. On the other hand, its destabilization strongly represses the viability and metastatic potential of cancer cells. Photodynamic and photothermal therapies (PDT and PTT) target mitochondria effectively, providing innovative and non-invasive anticancer therapeutic modalities. Cyanine dyes, with strong mitochondrial selectivity, show significant potential in enhancing PDT and PTT. The potential and limitations of cyanine dyes for mitochondrial PDT and PTT are discussed, along with their applications in combination therapies, theranostic techniques, and optimal delivery systems. Additionally, novel approaches for sonodynamic therapy using photoactive cyanine dyes are presented, highlighting advances in cancer treatment.

摘要

线粒体功能失调在癌症发生过程中起重要作用。另一方面,其失稳会强烈抑制癌细胞的活力和转移潜能。光动力疗法和光热疗法(PDT和PTT)能有效靶向线粒体,提供创新的非侵入性抗癌治疗方式。具有强线粒体选择性的菁染料在增强PDT和PTT方面显示出巨大潜力。本文讨论了菁染料用于线粒体PDT和PTT的潜力与局限性,以及它们在联合治疗、诊疗技术和优化递送系统中的应用。此外,还介绍了使用光活性菁染料进行声动力治疗的新方法,突出了癌症治疗方面的进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/cfa0563f2df2/42004_2024_1256_Fig22_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/d9b9049d890d/42004_2024_1256_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/f3029fb28537/42004_2024_1256_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/a7a4b65502e1/42004_2024_1256_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/7c894308d1b6/42004_2024_1256_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/b2e0c8d8d03d/42004_2024_1256_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/0b11a61730a0/42004_2024_1256_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/828fd15ffbe1/42004_2024_1256_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/f1d0b5e2a110/42004_2024_1256_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/ca3e3e189d01/42004_2024_1256_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/f4fa09ed7983/42004_2024_1256_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/2f49ad920236/42004_2024_1256_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/83d225b240bb/42004_2024_1256_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/3f9f039fcb28/42004_2024_1256_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/3882d8dce199/42004_2024_1256_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/5df2d7c30488/42004_2024_1256_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/d0b1cfaec5a8/42004_2024_1256_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/428d59100bd4/42004_2024_1256_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/72009d8575a6/42004_2024_1256_Fig18_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/5b0523a68d62/42004_2024_1256_Fig19_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/ea3323e23b13/42004_2024_1256_Fig20_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/7ae92a7e2b18/42004_2024_1256_Fig21_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/cfa0563f2df2/42004_2024_1256_Fig22_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/d9b9049d890d/42004_2024_1256_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/f3029fb28537/42004_2024_1256_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/a7a4b65502e1/42004_2024_1256_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/7c894308d1b6/42004_2024_1256_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/b2e0c8d8d03d/42004_2024_1256_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/0b11a61730a0/42004_2024_1256_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/828fd15ffbe1/42004_2024_1256_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/f1d0b5e2a110/42004_2024_1256_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/ca3e3e189d01/42004_2024_1256_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/f4fa09ed7983/42004_2024_1256_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/2f49ad920236/42004_2024_1256_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/83d225b240bb/42004_2024_1256_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/3f9f039fcb28/42004_2024_1256_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/3882d8dce199/42004_2024_1256_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/5df2d7c30488/42004_2024_1256_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/d0b1cfaec5a8/42004_2024_1256_Fig16_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/428d59100bd4/42004_2024_1256_Fig17_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/72009d8575a6/42004_2024_1256_Fig18_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/5b0523a68d62/42004_2024_1256_Fig19_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/ea3323e23b13/42004_2024_1256_Fig20_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/7ae92a7e2b18/42004_2024_1256_Fig21_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d022/11322665/cfa0563f2df2/42004_2024_1256_Fig22_HTML.jpg

相似文献

[1]
Cyanine dyes in the mitochondria-targeting photodynamic and photothermal therapy.

Commun Chem. 2024-8-13

[2]
Recent Advances in Cyanine-Based Phototherapy Agents.

Front Chem. 2021-6-24

[3]
Dual imaging-guided photothermal/photodynamic therapy using micelles.

Biomaterials. 2014-3-6

[4]
Glutathione-activated biotin-targeted dual-modal imaging probe with improved PDT/PTT synergistic therapy.

Anal Chim Acta. 2024-8-8

[5]
Iodinated cyanine dye-based nanosystem for synergistic phototherapy and hypoxia-activated bioreductive therapy.

Drug Deliv. 2022-12

[6]
Synthesis of a versatile mitochondria-targeting small molecule for cancer near-infrared fluorescent imaging and radio/photodynamic/photothermal synergistic therapies.

Mater Today Bio. 2022-6-7

[7]
Engineering naphthalimide-cyanine integrated near-infrared dye into ROS-responsive nanohybrids for tumor PDT/PTT/chemotherapy.

Bioact Mater. 2021-12-20

[8]
Combined concurrent photodynamic and gold nanoshell loaded macrophage-mediated photothermal therapies: an in vitro study on squamous cell head and neck carcinoma.

Lasers Surg Med. 2014-4

[9]
Nanomaterials-based advanced systems for photothermal / photodynamic therapy of oral cancer.

Eur J Med Chem. 2024-6-5

[10]
All-in-One Heptamethine Cyanine Amphiphiles for Dual Imaging-Guided Chemo-Photodynamic-Photothermal Therapy of Breast Cancer.

Adv Healthc Mater. 2023-10

引用本文的文献

[1]
Micro/nanorobots in antimicrobial therapy: Addressing challenges of antibiotic resistance.

Mater Today Bio. 2025-5-31

[2]
Anti-Tumor Strategies of Photothermal Therapy Combined with Other Therapies Using Nanoplatforms.

Pharmaceutics. 2025-2-26

[3]
New horizons for the therapeutic application of nanozymes in cancer treatment.

J Nanobiotechnology. 2025-2-20

[4]
Electrostatic Co-Assembly of Cyanine Pair for Augmented Photoacoustic Imaging and Photothermal Therapy.

Adv Sci (Weinh). 2025-4

[5]
Injecting hope: the potential of intratumoral immunotherapy for locally advanced and metastatic cancer.

Front Immunol. 2025-1-9

本文引用的文献

[1]
Mitochondrial bioenergetics as a cell fate rheostat for responsive to Bcl-2 drugs: New cues for cancer chemotherapy.

Cancer Lett. 2024-7-10

[2]
Selective antibacterial and antibiofilm activity of chlorinated hemicyanine against gram-positive bacteria.

Spectrochim Acta A Mol Biomol Spectrosc. 2024-8-5

[3]
Community Health workers United to Reduce Colorectal cancer and cardiovascular disease among people at Higher risk (CHURCH): study protocol for a randomized controlled trial.

Trials. 2024-4-26

[4]
TPP-based conjugates: potential targeting ligands.

Drug Discov Today. 2024-6

[5]
Advances in liposomes loaded with photoresponse materials for cancer therapy.

Biomed Pharmacother. 2024-5

[6]
Cancer Cell-Mimicking Prussian Blue Nanoplatform for Synergistic Mild Photothermal/Chemotherapy via Heat Shock Protein Inhibition.

ACS Appl Mater Interfaces. 2024-4-16

[7]
Recent advances in light-triggered cancer immunotherapy.

J Mater Chem B. 2024-3-13

[8]
An ER-targeted, Viscosity-sensitive Hemicyanine Dye for the Diagnosis of Nonalcoholic Fatty Liver and Photodynamic Cancer Therapy by Activating Pyroptosis Pathway.

Angew Chem Int Ed Engl. 2024-2-26

[9]
A Dual-Function Hemicyanine Material with Highly Efficient Photothermal and Photodynamic Effect Used for Tumor Therapy.

Adv Healthc Mater. 2024-4

[10]
Photodynamic Therapy-Induced Anti-Tumor Immunity: Influence Factors and Synergistic Enhancement Strategies.

Pharmaceutics. 2023-11-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索