Hasso Plattner Institute, Digital Engineering Faculty, University of Potsdam, Potsdam, Germany.
BMC Bioinformatics. 2021 Aug 12;22(1):401. doi: 10.1186/s12859-021-04308-z.
Reproducible benchmarking is important for assessing the effectiveness of novel feature selection approaches applied on gene expression data, especially for prior knowledge approaches that incorporate biological information from online knowledge bases. However, no full-fledged benchmarking system exists that is extensible, provides built-in feature selection approaches, and a comprehensive result assessment encompassing classification performance, robustness, and biological relevance. Moreover, the particular needs of prior knowledge feature selection approaches, i.e. uniform access to knowledge bases, are not addressed. As a consequence, prior knowledge approaches are not evaluated amongst each other, leaving open questions regarding their effectiveness.
We present the Comprior benchmark tool, which facilitates the rapid development and effortless benchmarking of feature selection approaches, with a special focus on prior knowledge approaches. Comprior is extensible by custom approaches, offers built-in standard feature selection approaches, enables uniform access to multiple knowledge bases, and provides a customizable evaluation infrastructure to compare multiple feature selection approaches regarding their classification performance, robustness, runtime, and biological relevance.
Comprior allows reproducible benchmarking especially of prior knowledge approaches, which facilitates their applicability and for the first time enables a comprehensive assessment of their effectiveness.
可重现的基准测试对于评估应用于基因表达数据的新型特征选择方法的有效性非常重要,特别是对于那些利用在线知识库中的生物信息的先验知识方法。然而,目前还没有一个可扩展的、提供内置特征选择方法以及全面的结果评估(包括分类性能、鲁棒性和生物学相关性)的成熟基准测试系统。此外,先验知识特征选择方法的特殊需求,即统一访问知识库,也没有得到解决。因此,先验知识方法之间没有相互评估,这就留下了关于它们有效性的问题。
我们提出了 Comprior 基准工具,它为特征选择方法的快速开发和轻松基准测试提供了便利,特别关注先验知识方法。Comprior 可以通过自定义方法进行扩展,提供内置的标准特征选择方法,实现对多个知识库的统一访问,并提供可定制的评估基础设施,以比较多个特征选择方法在分类性能、鲁棒性、运行时和生物学相关性方面的性能。
Comprior 允许对先验知识方法进行可重现的基准测试,这有助于它们的应用,并首次能够全面评估它们的有效性。