Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, Zürich, 8057, Switzerland.
SIB Swiss Institute of Bioinformatics, Zürich, Switzerland.
Genome Biol. 2020 Sep 1;21(1):227. doi: 10.1186/s13059-020-02136-7.
We present pipeComp ( https://github.com/plger/pipeComp ), a flexible R framework for pipeline comparison handling interactions between analysis steps and relying on multi-level evaluation metrics. We apply it to the benchmark of single-cell RNA-sequencing analysis pipelines using simulated and real datasets with known cell identities, covering common methods of filtering, doublet detection, normalization, feature selection, denoising, dimensionality reduction, and clustering. pipeComp can easily integrate any other step, tool, or evaluation metric, allowing extensible benchmarks and easy applications to other fields, as we demonstrate through a study of the impact of removal of unwanted variation on differential expression analysis.
我们介绍了 pipeComp(https://github.com/plger/pipeComp),这是一个用于处理分析步骤之间交互的灵活的 R 框架,它依赖于多层次的评估指标。我们将其应用于使用已知细胞身份的模拟和真实数据集的单细胞 RNA 测序分析管道的基准测试,涵盖了常见的过滤、双细胞检测、归一化、特征选择、去噪、降维和聚类方法。pipeComp 可以轻松集成任何其他步骤、工具或评估指标,允许可扩展的基准测试和轻松应用于其他领域,正如我们通过研究去除不需要的变异对差异表达分析的影响来展示的那样。