DiscGenics Inc, 5940 Harold Gatty Dr, Salt Lake City, UT, 84116, USA.
Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, USA.
Stem Cell Res Ther. 2021 Aug 12;12(1):455. doi: 10.1186/s13287-021-02525-0.
Culturing cells as cell spheres results in a tissue-like environment that drives unique cell phenotypes, making it useful for generating cell populations intended for therapeutic use. Unfortunately, common methods that utilize static suspension culture have limited scalability, making commercialization of such cell therapies challenging. Our team is developing an allogeneic cell therapy for the treatment of lumbar disc degeneration comprised of discogenic cells, which are progenitor cells expanded from human nucleus pulposus cells that are grown in a sphere configuration.
We evaluate sphere production in Erlenmeyer, horizontal axis wheel, stirred tank bioreactor, and rocking bag format. We then explore the use of ramped agitation profiles and computational fluid dynamics to overcome obstacles related to cell settling and the undesired impact of mechanical forces on cell characteristics. Finally, we grow discogenic cells in stirred tank reactors (STRs) and test outcomes in vitro (potency via aggrecan production and identity) and in vivo (rabbit model of disc degeneration).
Computation fluid dynamics were used to model hydrodynamic conditions in STR systems and develop statistically significant correlations to cell attributes including potency (measured by aggrecan production), cell doublings, cell settling, and sphere size. Subsequent model-based optimization and testing resulted in growth of cells with comparable attributes to the original static process, as measured using both in vitro and in vivo models. Maximum shear rate (1/s) was maintained between scales to demonstrate feasibility in a 50 L STR (200-fold scale-up).
Transition of discogenic cell production from static culture to a stirred-tank bioreactor enables cell sphere production in a scalable format. This work shows significant progress towards establishing a large-scale bioprocess methodology for this novel cell therapy that can be used for other, similar cell therapies.
将细胞培养成细胞球会产生类似于组织的环境,从而驱动独特的细胞表型,这对于生成用于治疗目的的细胞群体非常有用。不幸的是,利用静态悬浮培养的常见方法具有有限的可扩展性,这使得此类细胞疗法的商业化具有挑战性。我们的团队正在开发一种用于治疗腰椎间盘退变的同种异体细胞疗法,该疗法由椎间盘细胞组成,这些细胞是从人椎间盘细胞中扩增的祖细胞,以球体形式生长。
我们评估了在 Erlenmeyer 瓶、水平轴轮、搅拌罐生物反应器和摇袋形式中生产细胞球的情况。然后,我们探索了使用渐变搅拌曲线和计算流体动力学来克服与细胞沉降和机械力对细胞特性的不良影响相关的障碍。最后,我们在搅拌罐反应器 (STR) 中培养椎间盘细胞,并在体外(通过聚集蛋白聚糖产生和身份进行效力测试)和体内(兔椎间盘退变模型)进行测试。
计算流体动力学用于模拟 STR 系统中的流体动力学条件,并开发与细胞特性相关的统计学上显著的相关性,包括效力(通过聚集蛋白聚糖产生来衡量)、细胞倍增、细胞沉降和球体大小。随后的基于模型的优化和测试导致了细胞生长,其属性与原始静态过程相当,这是通过使用体外和体内模型来衡量的。在 50LSTR(200 倍放大)中保持最大剪切速率(1/s)以证明其可行性。
将椎间盘细胞生产从静态培养过渡到搅拌罐生物反应器,使得能够以可扩展的格式生产细胞球。这项工作在建立这种新型细胞疗法的大规模生物工艺方法方面取得了重大进展,该方法可用于其他类似的细胞疗法。