Borys Breanna S, Dang Tiffany, So Tania, Rohani Leili, Revay Tamas, Walsh Tylor, Thompson Madalynn, Argiropoulos Bob, Rancourt Derrick E, Jung Sunghoon, Hashimura Yas, Lee Brian, Kallos Michael S
Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.
Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.
Stem Cell Res Ther. 2021 Jan 13;12(1):55. doi: 10.1186/s13287-020-02109-4.
Human induced pluripotent stem cells (hiPSCs) hold enormous promise in accelerating breakthroughs in understanding human development, drug screening, disease modeling, and cell and gene therapies. Their potential, however, has been bottlenecked in a mostly laboratory setting due to bioprocess challenges in the scale-up of large quantities of high-quality cells for clinical and manufacturing purposes. While several studies have investigated the production of hiPSCs in bioreactors, the use of conventional horizontal-impeller, paddle, and rocking-wave mixing mechanisms have demonstrated unfavorable hydrodynamic environments for hiPSC growth and quality maintenance. This study focused on using computational fluid dynamics (CFD) modeling to aid in characterizing and optimizing the use of vertical-wheel bioreactors for hiPSC production.
The vertical-wheel bioreactor was modeled with CFD simulation software Fluent at agitation rates between 20 and 100 rpm. These models produced fluid flow patterns that mapped out a hydrodynamic environment to guide in the development of hiPSC inoculation and in-vessel aggregate dissociation protocols. The effect of single-cell inoculation on aggregate formation and growth was tested at select CFD-modeled agitation rates and feeding regimes in the vertical-wheel bioreactor. An in-vessel dissociation protocol was developed through the testing of various proteolytic enzymes and agitation exposure times.
CFD modeling demonstrated the unique flow pattern and homogeneous distribution of hydrodynamic forces produced in the vertical-wheel bioreactor, making it the opportune environment for systematic bioprocess optimization of hiPSC expansion. We developed a scalable, single-cell inoculation protocol for the culture of hiPSCs as aggregates in vertical-wheel bioreactors, achieving over 30-fold expansion in 6 days without sacrificing cell quality. We have also provided the first published protocol for in-vessel hiPSC aggregate dissociation, permitting the entire bioreactor volume to be harvested into single cells for serial passaging into larger scale reactors. Importantly, the cells harvested and re-inoculated into scaled-up vertical-wheel bioreactors not only maintained consistent growth kinetics, they maintained a normal karyotype and pluripotent characterization and function.
Taken together, these protocols provide a feasible solution for the culture of high-quality hiPSCs at a clinical and manufacturing scale by overcoming some of the major documented bioprocess bottlenecks.
人类诱导多能干细胞(hiPSC)在加速人类发育理解、药物筛选、疾病建模以及细胞和基因治疗等方面的突破中具有巨大潜力。然而,由于在扩大生产用于临床和制造目的的大量高质量细胞的生物过程中面临挑战,其潜力大多局限于实验室环境。虽然有多项研究探讨了在生物反应器中生产hiPSC,但使用传统的水平叶轮、桨叶和摇波混合机制已证明对hiPSC生长和质量维持而言,其流体动力学环境并不理想。本研究聚焦于使用计算流体动力学(CFD)建模来辅助表征和优化用于hiPSC生产的垂直轮式生物反应器的使用。
使用CFD模拟软件Fluent对垂直轮式生物反应器在20至100转/分钟的搅拌速率下进行建模。这些模型生成了流体流动模式,描绘出一种流体动力学环境,以指导hiPSC接种和容器内聚集体解离方案的制定。在垂直轮式生物反应器中,在选定的CFD建模搅拌速率和进料方式下,测试了单细胞接种对聚集体形成和生长的影响。通过测试各种蛋白水解酶和搅拌暴露时间,制定了一种容器内解离方案。
CFD建模展示了垂直轮式生物反应器中独特的流动模式和流体动力的均匀分布,使其成为hiPSC扩增系统生物过程优化的适宜环境。我们开发了一种可扩展的单细胞接种方案,用于在垂直轮式生物反应器中作为聚集体培养hiPSC,在不牺牲细胞质量的情况下,6天内实现了超过30倍的扩增。我们还提供了首个已发表的关于容器内hiPSC聚集体解离的方案,使得能够将整个生物反应器体积收获为单细胞,以便连续传代至更大规模的反应器。重要的是,收获并重新接种到扩大规模的垂直轮式生物反应器中的细胞不仅保持了一致的生长动力学,还维持了正常的核型以及多能性特征和功能。
综上所述,这些方案通过克服一些已记录的主要生物过程瓶颈,为在临床和制造规模上培养高质量hiPSC提供了可行的解决方案。