Suppr超能文献

膜结合型KRAS近似于多种构象的熵集合。

Membrane-bound KRAS approximates an entropic ensemble of configurations.

作者信息

Heinrich Frank, Van Que N, Jean-Francois Frantz, Stephen Andrew G, Lösche Mathias

机构信息

Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania; Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland.

National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland.

出版信息

Biophys J. 2021 Sep 21;120(18):4055-4066. doi: 10.1016/j.bpj.2021.08.008. Epub 2021 Aug 10.

Abstract

KRAS4B is a membrane-anchored signaling protein and a primary target in cancer research. Predictions from molecular dynamics simulations that have previously shaped our mechanistic understanding of KRAS signaling disagree with recent experimental results from neutron reflectometry, NMR, and thermodynamic binding studies. To gain insight into these discrepancies, we compare this body of biophysical data to back-calculated experimental results from a series of molecular simulations that implement different subsets of molecular interactions. Our results show that KRAS4B approximates an entropic ensemble of configurations at model membranes containing 30% phosphatidylserine lipids, which is not significantly shaped by interactions between the globular G-domain of KRAS4B and the lipid membrane. These findings revise our understanding of KRAS signaling and promote a model in which the protein samples the accessible conformational space in a near-uniform manner while being available to bind to effector proteins.

摘要

KRAS4B是一种膜锚定信号蛋白,也是癌症研究的主要靶点。此前塑造我们对KRAS信号传导机制理解的分子动力学模拟预测,与最近来自中子反射测量、核磁共振和热力学结合研究的实验结果不一致。为了深入了解这些差异,我们将这一系列生物物理数据与来自一系列实施不同分子相互作用子集的分子模拟的反算实验结果进行比较。我们的结果表明,KRAS4B在含有30%磷脂酰丝氨酸脂质的模型膜上近似于一种熵构型集合,这并没有受到KRAS4B球状G结构域与脂质膜之间相互作用的显著影响。这些发现修正了我们对KRAS信号传导的理解,并推动了一种模型,即蛋白质以近乎均匀的方式采样可及的构象空间,同时能够与效应蛋白结合。

相似文献

1
Membrane-bound KRAS approximates an entropic ensemble of configurations.
Biophys J. 2021 Sep 21;120(18):4055-4066. doi: 10.1016/j.bpj.2021.08.008. Epub 2021 Aug 10.
2
PIP2 Influences the Conformational Dynamics of Membrane-Bound KRAS4b.
Biochemistry. 2019 Aug 20;58(33):3537-3545. doi: 10.1021/acs.biochem.9b00395. Epub 2019 Aug 1.
3
The Plasma Membrane as a Competitive Inhibitor and Positive Allosteric Modulator of KRas4B Signaling.
Biophys J. 2020 Mar 10;118(5):1129-1141. doi: 10.1016/j.bpj.2019.12.039. Epub 2020 Jan 22.
4
Uncovering a membrane-distal conformation of KRAS available to recruit RAF to the plasma membrane.
Proc Natl Acad Sci U S A. 2020 Sep 29;117(39):24258-24268. doi: 10.1073/pnas.2006504117. Epub 2020 Sep 10.
5
Dynamics of Membrane-Bound G12V-KRAS from Simulations and Single-Molecule FRET in Native Nanodiscs.
Biophys J. 2019 Jan 22;116(2):179-183. doi: 10.1016/j.bpj.2018.12.011. Epub 2018 Dec 20.
7
The Self-Association of the KRAS4b Protein is Altered by Lipid-Bilayer Composition and Electrostatics.
Angew Chem Int Ed Engl. 2023 Apr 24;62(18):e202218698. doi: 10.1002/anie.202218698. Epub 2023 Mar 27.
8
Multivalent assembly of KRAS with the RAS-binding and cysteine-rich domains of CRAF on the membrane.
Proc Natl Acad Sci U S A. 2020 Jun 2;117(22):12101-12108. doi: 10.1073/pnas.1914076117. Epub 2020 May 15.
9
Exploring CRD mobility during RAS/RAF engagement at the membrane.
Biophys J. 2022 Oct 4;121(19):3630-3650. doi: 10.1016/j.bpj.2022.06.035. Epub 2022 Jul 1.
10
Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site.
Proc Natl Acad Sci U S A. 2015 May 26;112(21):6625-30. doi: 10.1073/pnas.1419895112. Epub 2015 May 4.

引用本文的文献

2
Conformational Dynamics and Activation of Membrane-Associated Human Group IVA Cytosolic Phospholipase A (cPLA).
J Phys Chem Lett. 2025 Jun 19;16(24):6059-6065. doi: 10.1021/acs.jpclett.5c00860. Epub 2025 Jun 9.
3
Structural and biophysical properties of farnesylated KRas interacting with the chaperone SmgGDS-558.
Biophys J. 2022 Oct 4;121(19):3684-3697. doi: 10.1016/j.bpj.2022.05.028. Epub 2022 May 25.

本文引用的文献

1
Uncovering a membrane-distal conformation of KRAS available to recruit RAF to the plasma membrane.
Proc Natl Acad Sci U S A. 2020 Sep 29;117(39):24258-24268. doi: 10.1073/pnas.2006504117. Epub 2020 Sep 10.
2
Steering Molecular Dynamics Simulations of Membrane-Associated Proteins with Neutron Reflection Results.
J Chem Theory Comput. 2020 May 12;16(5):3408-3419. doi: 10.1021/acs.jctc.0c00136. Epub 2020 Apr 21.
3
Two Distinct Structures of Membrane-Associated Homodimers of GTP- and GDP-Bound KRAS4B Revealed by Paramagnetic Relaxation Enhancement.
Angew Chem Int Ed Engl. 2020 Jun 26;59(27):11037-11045. doi: 10.1002/anie.202001758. Epub 2020 Apr 30.
4
The Frequency of Ras Mutations in Cancer.
Cancer Res. 2020 Jul 15;80(14):2969-2974. doi: 10.1158/0008-5472.CAN-19-3682. Epub 2020 Mar 24.
5
The Plasma Membrane as a Competitive Inhibitor and Positive Allosteric Modulator of KRas4B Signaling.
Biophys J. 2020 Mar 10;118(5):1129-1141. doi: 10.1016/j.bpj.2019.12.039. Epub 2020 Jan 22.
6
Membrane-Bound Ras as a Conformational Clock.
Biophys J. 2020 Mar 10;118(5):991-993. doi: 10.1016/j.bpj.2020.01.011. Epub 2020 Jan 22.
8
Membrane Anchoring of Hck Kinase via the Intrinsically Disordered SH4-U and Length Scale Associated with Subcellular Localization.
J Mol Biol. 2020 Apr 17;432(9):2985-2997. doi: 10.1016/j.jmb.2019.11.024. Epub 2019 Dec 23.
9
Balanced Amino-Acid-Specific Molecular Dynamics Force Field for the Realistic Simulation of Both Folded and Disordered Proteins.
J Chem Theory Comput. 2020 Feb 11;16(2):1311-1318. doi: 10.1021/acs.jctc.9b01062. Epub 2020 Jan 9.
10
The Ras switch in structural and historical perspective.
Biol Chem. 2019 Dec 18;401(1):143-163. doi: 10.1515/hsz-2019-0330.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验