Columbia University, New York, NY, 10027, USA.
Stanford University, Stanford, CA, 94305, USA.
Sci Rep. 2021 Aug 12;11(1):16370. doi: 10.1038/s41598-021-95673-5.
Accurate and efficient detection of attention-deficit/hyperactivity disorder (ADHD) is critical to ensure proper treatment for affected individuals. Current clinical examinations, however, are inefficient and prone to misdiagnosis, as they rely on qualitative observations of perceived behavior. We propose a robust machine learning based framework that analyzes pupil-size dynamics as an objective biomarker for the automated detection of ADHD. Our framework integrates a comprehensive pupillometric feature engineering and visualization pipeline with state-of-the-art binary classification algorithms and univariate feature selection. The support vector machine classifier achieved an average 85.6% area under the receiver operating characteristic (AUROC), 77.3% sensitivity, and 75.3% specificity using ten-fold nested cross-validation (CV) on a declassified dataset of 50 patients. 218 of the 783 engineered features, including fourier transform metrics, absolute energy, consecutive quantile changes, approximate entropy, aggregated linear trends, as well as pupil-size dilation velocity, were found to be statistically significant differentiators (p < 0.05), and provide novel behavioral insights into associations between pupil-size dynamics and the presence of ADHD. Despite a limited sample size, the strong AUROC values highlight the robustness of the binary classifiers in detecting ADHD-as such, with additional data, sensitivity and specificity metrics can be substantially augmented. This study is the first to apply machine learning based methods for the detection of ADHD using solely pupillometrics, and highlights its strength as a potential discriminative biomarker, paving the path for the development of novel diagnostic applications to aid in the detection of ADHD using oculometric paradigms and machine learning.
准确、高效地检测注意力缺陷多动障碍(ADHD)对于确保对受影响个体进行适当治疗至关重要。然而,当前的临床检查效率低下且容易误诊,因为它们依赖于对感知行为的定性观察。我们提出了一个强大的基于机器学习的框架,该框架分析瞳孔大小动态,作为自动检测 ADHD 的客观生物标志物。我们的框架将全面的瞳孔测量特征工程和可视化管道与最先进的二进制分类算法和单变量特征选择相结合。在对 50 名患者的解密数据集进行十折嵌套交叉验证(CV)时,支持向量机分类器的平均接收器操作特征(AUROC)为 85.6%,灵敏度为 77.3%,特异性为 75.3%。在 783 个工程特征中,包括傅里叶变换指标、绝对能量、连续分位数变化、近似熵、聚合线性趋势以及瞳孔大小扩张速度在内的 218 个特征被发现具有统计学意义上的差异(p < 0.05),并为瞳孔大小动态与 ADHD 存在之间的关联提供了新的行为见解。尽管样本量有限,但强大的 AUROC 值突出了二进制分类器在检测 ADHD 方面的稳健性——因此,随着更多数据的加入,灵敏度和特异性指标可以得到实质性提高。这项研究是首次应用基于机器学习的方法仅使用瞳孔测量来检测 ADHD,并强调了其作为潜在鉴别生物标志物的优势,为使用眼动学范式和机器学习开发新的诊断应用以辅助 ADHD 检测铺平了道路。