Rahman Muhammad Mahbubur
Center for Translational Research, Children's National Hospital, Silver Spring, MD, United States.
Pediatrics & Biostatistics and Bioinformatics, George Washington University, Washington, DC, United States.
Front Child Adolesc Psychiatry. 2025 May 22;4:1504323. doi: 10.3389/frcha.2025.1504323. eCollection 2025.
Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder with a complex etiology. The current diagnostic process for ADHD is often time-intensive and subjective. Recent advancements in machine learning offer new opportunities to improve ADHD diagnosis using diverse data sources. This study explores the potential of Fitbit-derived physical activity data to enhance ADHD diagnosis.
We analyzed a sample of 450 participants from the Adolescent Brain Cognitive Development (ABCD) study (data release 5.0). Correlation analyses were conducted to examine associations between ADHD diagnosis and Fitbit-derived measurements, including sedentary time, resting heart rate, and energy expenditure. We then used multivariable logistic regression models to evaluate the predictive power of these measurements for ADHD diagnosis. Additionally, machine learning classifiers were trained to automatically classify individuals into ADHD+ and ADHD- groups.
Our correlation analyses revealed statistically significant associations between ADHD diagnosis and Fitbit-derived physical activity data. The multivariable logistic regression models identified specific Fitbit measurements that significantly predicted ADHD diagnosis. Among the machine learning classifiers, the Random Forest outperformed others with cross-validation accuracy of 0.89, AUC of 0.95, precision of 0.88, recall of 0.90, F1-score of 0.89, and test accuracy of 0.88.
Fitbit-derived measurements show promise for predicting ADHD diagnosis, with machine learning classifiers, particularly Random Forest, demonstrating high predictive accuracy. These findings suggest that wearable data may contribute to more objective and efficient methods for ADHD identification, potentially enhancing clinical practices for diagnosis and management.
注意力缺陷多动障碍(ADHD)是一种常见的神经发育障碍,病因复杂。目前ADHD的诊断过程通常耗时且主观。机器学习的最新进展为利用多种数据源改善ADHD诊断提供了新机会。本研究探讨了源自Fitbit的身体活动数据在增强ADHD诊断方面的潜力。
我们分析了来自青少年大脑认知发展(ABCD)研究(数据版本5.0)的450名参与者的样本。进行相关性分析以检查ADHD诊断与源自Fitbit的测量值之间的关联,包括久坐时间、静息心率和能量消耗。然后我们使用多变量逻辑回归模型来评估这些测量值对ADHD诊断的预测能力。此外,训练机器学习分类器以自动将个体分为ADHD+组和ADHD-组。
我们的相关性分析揭示了ADHD诊断与源自Fitbit的身体活动数据之间具有统计学意义的关联。多变量逻辑回归模型确定了能显著预测ADHD诊断的特定Fitbit测量值。在机器学习分类器中,随机森林的表现优于其他分类器,交叉验证准确率为0.89,曲线下面积为0.95,精确率为0.88,召回率为0.90,F1分数为0.89,测试准确率为0.88。
源自Fitbit的测量值在预测ADHD诊断方面显示出前景,机器学习分类器,特别是随机森林,表现出较高的预测准确性。这些发现表明,可穿戴数据可能有助于采用更客观、高效的方法来识别ADHD,潜在地改善诊断和管理的临床实践。