Suppr超能文献

基于多模态生理数据的机器学习对注意缺陷多动障碍的检测:一项病例对照研究。

Machine learning-enabled detection of attention-deficit/hyperactivity disorder with multimodal physiological data: a case-control study.

机构信息

Feel Therapeutics Inc., 479 Jessie St., San Francisco, CA94103, CA, USA.

First Department of Psychiatry, Eginition Hospital, Medical School National and Kapodistrian University of Athens, Athens, Greece.

出版信息

BMC Psychiatry. 2024 Aug 5;24(1):547. doi: 10.1186/s12888-024-05987-7.

Abstract

BACKGROUND

Attention-Deficit/Hyperactivity Disorder (ADHD) is a multifaceted neurodevelopmental psychiatric condition that typically emerges during childhood but often persists into adulthood, significantly impacting individuals' functioning, relationships, productivity, and overall quality of life. However, the current diagnostic process exhibits limitations that can significantly affect its overall effectiveness. Notably, its face-to-face and time-consuming nature, coupled with the reliance on subjective recall of historical information and clinician subjectivity, stand out as key challenges. To address these limitations, objective measures such as neuropsychological evaluations, imaging techniques and physiological monitoring of the Autonomic Nervous System functioning, have been explored.

METHODS

The main aim of this study was to investigate whether physiological data (i.e., Electrodermal Activity, Heart Rate Variability, and Skin Temperature) can serve as meaningful indicators of ADHD, evaluating its utility in distinguishing adult ADHD patients. This observational, case-control study included a total of 76 adult participants (32 ADHD patients and 44 healthy controls) who underwent a series of Stroop tests, while their physiological data was passively collected using a multi-sensor wearable device. Univariate feature analysis was employed to identify the tests that triggered significant signal responses, while the Informative k-Nearest Neighbors (KNN) algorithm was used to filter out less informative data points. Finally, a machine-learning decision pipeline incorporating various classification algorithms, including Logistic Regression, KNN, Random Forests, and Support Vector Machines (SVM), was utilized for ADHD patient detection.

RESULTS

Results indicate that the SVM-based model yielded the optimal performance, achieving 81.6% accuracy, maintaining a balance between the experimental and control groups, with sensitivity and specificity of 81.4% and 81.9%, respectively. Additionally, integration of data from all physiological signals yielded the best results, suggesting that each modality captures unique aspects of ADHD.

CONCLUSIONS

This study underscores the potential of physiological signals as valuable diagnostic indicators of adult ADHD. For the first time, to the best of our knowledge, our findings demonstrate that multimodal physiological data collected via wearable devices can complement traditional diagnostic approaches. Further research is warranted to explore the clinical applications and long-term implications of utilizing physiological markers in ADHD diagnosis and management.

摘要

背景

注意力缺陷多动障碍(ADHD)是一种多方面的神经发育性精神疾病,通常在儿童时期出现,但往往会持续到成年期,严重影响个体的功能、人际关系、生产力和整体生活质量。然而,目前的诊断过程存在局限性,这可能会显著影响其整体效果。值得注意的是,其面对面和耗时的性质,加上对历史信息的主观回忆和临床医生主观性的依赖,是主要的挑战。为了解决这些局限性,已经探索了神经心理学评估、成像技术和自主神经系统功能的生理监测等客观措施。

方法

本研究的主要目的是探讨生理数据(即皮肤电活动、心率变异性和皮肤温度)是否可以作为 ADHD 的有意义指标,评估其在区分成年 ADHD 患者中的效用。这项观察性病例对照研究共纳入了 76 名成年参与者(32 名 ADHD 患者和 44 名健康对照者),他们接受了一系列 Stroop 测试,同时使用多传感器可穿戴设备被动收集他们的生理数据。使用单变量特征分析来识别触发显著信号响应的测试,而信息 K-最近邻(KNN)算法用于过滤掉信息量较少的数据点。最后,使用包含各种分类算法的机器学习决策管道,包括逻辑回归、KNN、随机森林和支持向量机(SVM),对 ADHD 患者进行检测。

结果

结果表明,基于 SVM 的模型表现最佳,准确率为 81.6%,在实验组和对照组之间保持平衡,灵敏度和特异性分别为 81.4%和 81.9%。此外,整合所有生理信号的数据产生了最佳的结果,表明每种模式都捕捉到了 ADHD 的独特方面。

结论

这项研究强调了生理信号作为成人 ADHD 有价值的诊断指标的潜力。据我们所知,这是首次表明通过可穿戴设备收集的多模态生理数据可以补充传统的诊断方法。需要进一步研究以探索在 ADHD 诊断和管理中使用生理标志物的临床应用和长期影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6d7/11302198/9adf950e74ad/12888_2024_5987_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验