Department of Mathematics, Abdul Wali Khan University, Mardan, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan.
Department of Mathematical Sciences, University of Lakki Marwat, Lakki Marwat, 28420, Khyber Pakhtunkhwa, Pakistan.
Sci Rep. 2021 Aug 12;11(1):16376. doi: 10.1038/s41598-021-95878-8.
This study presents the magnetized and non-magnetized Casson fluid flow with gyrotactic microorganisms over a stratified stretching cylinder. The mathematical modeling is presented in the form of partial differential equations and then transformed into ordinary differential equations (ODEs) utilizing suitable similarity transformations. The analytical solution of the transformed ODEs is presented with the help of homotopy analysis method (HAM). The convergence analysis of HAM is also presented by mean of figure. The present analysis consists of five phases. In the first four phases, we have compared our work with previously published investigations while phase five is consists of our new results. The influences of dimensionless factors like a magnetic parameter, thermal radiation, curvature parameter, Prandtl number, Brownian motion parameter, Schmidt number, heat generation, chemical reaction parameter, thermophoresis parameter, Eckert number, and concentration difference parameter on physical quantities of interests and flow profiles are shown through tables and figures. It has been established that with the increasing Casson parameter (i.e. [Formula: see text]), the streamlines become denser which results the increasing behavior in the fluid velocity while on the other hand, the fluid velocity reduces for the existence of Casson parameter (i.e. [Formula: see text]). Also, the streamlines of stagnation point Casson fluid flow are highly wider for the case of magnetized fluid as equated to non-magnetized fluid. The higher values of bioconvection Lewis number, Peclet number, and microorganisms' concentration difference parameter reduces the motile density function of microorganisms while an opposite behavior is depicted against density number.
本研究提出了在分层拉伸圆柱上带有旋进微生物的磁化和非磁化 Casson 流体流动。数学模型以偏微分方程的形式呈现,然后利用合适的相似变换转化为常微分方程(ODE)。利用同伦分析方法(HAM)给出了变换后 ODE 的解析解。通过图形给出了 HAM 的收敛分析。本分析由五个阶段组成。在前四个阶段,我们将我们的工作与以前发表的研究进行了比较,而第五个阶段则包含了我们的新结果。通过表格和图形显示了无量纲因素如磁场参数、热辐射、曲率参数、Prandtl 数、Brownian 运动参数、Schmidt 数、热生成、化学反应参数、热泳参数、Eckert 数和浓度差参数对感兴趣的物理量和流动剖面的影响。已经确定,随着 Casson 参数的增加(即 [Formula: see text]),流线变得更加密集,导致流体速度增加,而另一方面,由于 Casson 参数的存在(即 [Formula: see text]),流体速度减小。此外,与非磁化流体相比,磁化流体的驻点 Casson 流体流动的流线更宽。较高的生物对流刘易斯数、佩克莱特数和微生物浓度差参数减小了微生物的游动密度函数,而密度数则表现出相反的行为。