Neuronal Oscillations Laboratory; Division of Neurogeriatrics; Center for Alzheimer Research; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden.
Division of Neurogeriatrics; Center for Alzheimer Research; Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden.
Mol Psychiatry. 2021 Oct;26(10):5557-5567. doi: 10.1038/s41380-021-01257-0. Epub 2021 Aug 12.
In Alzheimer's disease (AD) the accumulation of amyloid-β (Aβ) correlates with degradation of cognition-relevant gamma oscillations. The gamma rhythm relies on proper neuronal spike-gamma coupling, specifically of fast-spiking interneurons (FSN). Here we tested the hypothesis that decrease in gamma power and FSN synchrony precede amyloid plaque deposition and cognitive impairment in App knock-in mice (App). The aim of the study was to evaluate the amyloidogenic pathology progression in the novel App mouse model using in vitro electrophysiological network analysis. Using patch clamp of FSNs and pyramidal cells (PCs) with simultaneous gamma oscillation recordings, we compared the activity of the hippocampal network of wild-type mice (WT) and the App mice at four disease stages (1, 2, 4, and 6 months of age). We found a severe degradation of gamma oscillation power that is independent of, and precedes Aβ plaque formation, and the cognitive impairment reported previously in this animal model. The degradation correlates with increased Aβ concentration in the brain. Analysis on the cellular level showed an impaired spike-gamma coupling of FSN from 2 months of age that correlates with the degradation of gamma oscillations. From 6 months of age PC firing becomes desynchronized also, correlating with reports in the literature of robust Aβ plaque pathology and cognitive impairment in the App mice. This study provides evidence that impaired FSN spike-gamma coupling is one of the earliest functional impairment caused by the amyloidogenic pathology progression likely is the main cause for the degradation of gamma oscillations and consequent cognitive impairment. Our data suggests that therapeutic approaches should be aimed at restoring normal FSN spike-gamma coupling and not just removal of Aβ.
在阿尔茨海默病(AD)中,淀粉样蛋白-β(Aβ)的积累与认知相关的γ 振荡的降解有关。γ 节律依赖于适当的神经元尖峰-γ 耦合,特别是快速放电中间神经元(FSN)。在这里,我们测试了这样一个假设,即γ 功率和 FSN 同步性的下降先于淀粉样斑块沉积和 App 敲入小鼠(App)的认知障碍。本研究的目的是使用体外电生理网络分析评估新型 App 小鼠模型中的淀粉样蛋白形成病理学进展。通过对 FSN 和锥体细胞(PC)进行膜片钳记录并同时进行 γ 振荡记录,我们比较了野生型小鼠(WT)和 App 小鼠在四个疾病阶段(1、2、4 和 6 个月龄)的海马网络活动。我们发现γ 振荡功率严重下降,这种下降与 Aβ 斑块形成无关,并且先于以前在这种动物模型中报道的认知障碍。这种退化与大脑中 Aβ 浓度的增加相关。细胞水平的分析表明,从 2 个月大开始,FSN 的尖峰-γ 耦合受损,这与γ 振荡的退化相关。从 6 个月大开始,PC 的放电也变得不同步,这与文献中关于 App 小鼠中大量 Aβ 斑块病理学和认知障碍的报道一致。这项研究提供了证据,表明 FSN 尖峰-γ 耦合受损是淀粉样蛋白形成病理学进展引起的最早的功能障碍之一,很可能是 γ 振荡退化和随后的认知障碍的主要原因。我们的数据表明,治疗方法应该旨在恢复正常的 FSN 尖峰-γ 耦合,而不仅仅是去除 Aβ。