Suppr超能文献

形状异质性下计数过程的统计推断

Statistical Inference for Counting Processes Under Shape Heterogeneity.

作者信息

Sheng Ying, Sun Yifei

机构信息

The Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China.

Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York, USA.

出版信息

Stat Med. 2024 Dec 30;43(30):5849-5861. doi: 10.1002/sim.10280. Epub 2024 Nov 19.

Abstract

Proportional rate models are among the most popular methods for analyzing recurrent event data. Although providing a straightforward rate-ratio interpretation of covariate effects, the proportional rate assumption implies that covariates do not modify the shape of the rate function. When the proportionality assumption fails to hold, we propose to characterize covariate effects on the rate function through two types of parameters: the shape parameters and the size parameters. The former allows the covariates to flexibly affect the shape of the rate function, and the latter retains the interpretability of covariate effects on the magnitude of the rate function. To overcome the challenges in simultaneously estimating the two sets of parameters, we propose a conditional pseudolikelihood approach to eliminate the size parameters in shape estimation, followed by an event count projection approach for size estimation. The proposed estimators are asymptotically normal with a root- convergence rate. Simulation studies and an analysis of recurrent hospitalizations using SEER-Medicare data are conducted to illustrate the proposed methods.

摘要

比例率模型是分析复发事件数据最常用的方法之一。虽然比例率模型能直接对协变量效应进行率比解释,但比例率假设意味着协变量不会改变率函数的形状。当比例性假设不成立时,我们建议通过两种类型的参数来刻画协变量对率函数的影响:形状参数和大小参数。前者允许协变量灵活地影响率函数的形状,而后者保留了协变量对率函数大小影响的可解释性。为了克服同时估计这两组参数时的挑战,我们提出一种条件伪似然方法,在形状估计中消除大小参数,然后采用事件计数投影方法进行大小估计。所提出的估计量渐近正态,具有根收敛速率。进行了模拟研究,并使用SEER - Medicare数据对再次住院情况进行了分析,以说明所提出的方法。

相似文献

1
Statistical Inference for Counting Processes Under Shape Heterogeneity.
Stat Med. 2024 Dec 30;43(30):5849-5861. doi: 10.1002/sim.10280. Epub 2024 Nov 19.
2
Statistical inference on shape and size indexes for counting processes.
Biometrika. 2022 Mar;109(1):195-208. doi: 10.1093/biomet/asab008. Epub 2021 Feb 12.
3
Recurrent event data analysis with intermittently observed time-varying covariates.
Stat Med. 2016 Aug 15;35(18):3049-65. doi: 10.1002/sim.6901. Epub 2016 Feb 16.
4
Likelihood approaches for proportional likelihood ratio model with right-censored data.
Stat Med. 2014 Jun 30;33(14):2467-79. doi: 10.1002/sim.6105. Epub 2014 Feb 6.
6
An estimating function approach to the analysis of recurrent and terminal events.
Biometrics. 2013 Jun;69(2):366-74. doi: 10.1111/biom.12025. Epub 2013 May 7.
7
Semiparametric modelling and estimation of covariate-adjusted dependence between bivariate recurrent events.
Biometrics. 2020 Dec;76(4):1229-1239. doi: 10.1111/biom.13229. Epub 2020 Feb 18.
8
Conditional modeling of recurrent event data with terminal event.
Lifetime Data Anal. 2025 Jan;31(1):187-204. doi: 10.1007/s10985-024-09637-8. Epub 2024 Oct 12.
9
A positive stable frailty model for clustered failure time data with covariate-dependent frailty.
Biometrics. 2011 Mar;67(1):8-17. doi: 10.1111/j.1541-0420.2010.01444.x.
10
Tests for the proportional intensity assumption based on the score process.
Lifetime Data Anal. 2004 Jun;10(2):139-57. doi: 10.1023/b:lida.0000030200.61020.85.

本文引用的文献

1
Statistical inference on shape and size indexes for counting processes.
Biometrika. 2022 Mar;109(1):195-208. doi: 10.1093/biomet/asab008. Epub 2021 Feb 12.
2
Improved semiparametric estimation of the proportional rate model with recurrent event data.
Biometrics. 2023 Sep;79(3):1686-1700. doi: 10.1111/biom.13788. Epub 2022 Nov 10.
4
Updated Overview of the SEER-Medicare Data: Enhanced Content and Applications.
J Natl Cancer Inst Monogr. 2020 May 1;2020(55):3-13. doi: 10.1093/jncimonographs/lgz029.
5
Joint scale-change models for recurrent events and failure time.
J Am Stat Assoc. 2017;112(518):794-805. doi: 10.1080/01621459.2016.1173557. Epub 2017 Apr 12.
6
Statistical inference methods for recurrent event processes with shape and size parameters.
Biometrika. 2014 Sep 1;101(3):553-566. doi: 10.1093/biomet/asu016.
7
Sufficient dimension reduction on the mean and rate functions of recurrent events.
Stat Med. 2014 Sep 20;33(21):3693-709. doi: 10.1002/sim.6160. Epub 2014 Mar 29.
8
Analyzing Recurrent Event Data With Informative Censoring.
J Am Stat Assoc. 2001;96(455). doi: 10.1198/016214501753209031.
9
A class of accelerated means regression models for recurrent event data.
Lifetime Data Anal. 2008 Sep;14(3):357-75. doi: 10.1007/s10985-008-9087-z. Epub 2008 Jun 1.
10
A semiparametric additive rates model for recurrent event data.
Lifetime Data Anal. 2006 Dec;12(4):389-406. doi: 10.1007/s10985-006-9017-x. Epub 2006 Sep 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验