Chiou Sy Han, Xu Gongjun, Yan Jun, Huang Chiung-Yu
Department of Mathematical Sciences, University of Texas at Dallas, Richardson, Texas 75080, U.S.A.
Department of Statistics, University of Michigan, Ann Arbor, Michigan 48109, U.S.A.
Biometrics. 2018 Sep;74(3):944-953. doi: 10.1111/biom.12840. Epub 2017 Dec 29.
Panel count data arise when the number of recurrent events experienced by each subject is observed intermittently at discrete examination times. The examination time process can be informative about the underlying recurrent event process even after conditioning on covariates. We consider a semiparametric accelerated mean model for the recurrent event process and allow the two processes to be correlated through a shared frailty. The regression parameters have a simple marginal interpretation of modifying the time scale of the cumulative mean function of the event process. A novel estimation procedure for the regression parameters and the baseline rate function is proposed based on a conditioning technique. In contrast to existing methods, the proposed method is robust in the sense that it requires neither the strong Poisson-type assumption for the underlying recurrent event process nor a parametric assumption on the distribution of the unobserved frailty. Moreover, the distribution of the examination time process is left unspecified, allowing for arbitrary dependence between the two processes. Asymptotic consistency of the estimator is established, and the variance of the estimator is estimated by a model-based smoothed bootstrap procedure. Numerical studies demonstrated that the proposed point estimator and variance estimator perform well with practical sample sizes. The methods are applied to data from a skin cancer chemoprevention trial.
当在离散的检查时间间歇性地观察每个受试者经历的复发事件数量时,就会产生面板计数数据。即使在对协变量进行条件设定之后,检查时间过程也可能对潜在的复发事件过程提供信息。我们考虑用于复发事件过程的半参数加速均值模型,并允许这两个过程通过共享脆弱性相关联。回归参数对修改事件过程累积均值函数的时间尺度具有简单的边际解释。基于一种条件设定技术,提出了一种用于回归参数和基线率函数的新颖估计程序。与现有方法相比,所提出的方法具有稳健性,因为它既不需要对潜在的复发事件过程有强泊松型假设,也不需要对未观察到的脆弱性分布有参数假设。此外,检查时间过程的分布未作具体规定,允许两个过程之间存在任意依赖性。建立了估计量的渐近一致性,并通过基于模型的平滑自助法程序估计估计量的方差。数值研究表明,所提出的点估计量和方差估计量在实际样本量下表现良好。这些方法应用于皮肤癌化学预防试验的数据。