Xue Xuemei, Lu Jing, Zhang Jiwei
School of Mathematical Sciences, Xiamen University, Xiamen, China.
Key Laboratory of Applied Statistics of MOE, School of Mathematics and Statistics, Northeast Normal University, Changchun, China.
Front Psychol. 2021 Jul 27;12:580015. doi: 10.3389/fpsyg.2021.580015. eCollection 2021.
In this paper, a new item-weighted scheme is proposed to assess examinees' growth in longitudinal analysis. A multidimensional Rasch model for measuring learning and change (MRMLC) and its polytomous extension is used to fit the longitudinal item response data. In fact, the new item-weighted likelihood estimation method is not only suitable for complex longitudinal IRT models, but also it can be used to estimate the unidimensional IRT models. For example, the combination of the two-parameter logistic (2PL) model and the partial credit model (PCM, Masters, 1982) with a varying number of categories. Two simulation studies are carried out to further illustrate the advantages of the item-weighted likelihood estimation method compared to the traditional Maximum a Posteriori (MAP) estimation method, Maximum likelihood estimation method (MLE), Warm's (1989) weighted likelihood estimation (WLE) method, and type-weighted maximum likelihood estimation (TWLE) method. Simulation results indicate that the improved item-weighted likelihood estimation method better recover examinees' true ability level for both complex longitudinal IRT models and unidimensional IRT models compared to the existing likelihood estimation (MLE, WLE and TWLE) methods and MAP estimation method, with smaller bias, root-mean-square errors, and root-mean-square difference especially at the low-and high-ability levels.
本文提出了一种新的项目加权方案,用于在纵向分析中评估考生的成长情况。采用一种用于测量学习和变化的多维拉施模型(MRMLC)及其多分类扩展来拟合纵向项目反应数据。实际上,新的项目加权似然估计方法不仅适用于复杂的纵向IRT模型,还可用于估计单维IRT模型。例如,两参数逻辑斯蒂(2PL)模型与具有不同类别数的部分计分模型(PCM,Masters,1982)的组合。进行了两项模拟研究,以进一步说明项目加权似然估计方法相对于传统的最大后验(MAP)估计方法、最大似然估计方法(MLE)、Warm(1989)的加权似然估计(WLE)方法和类型加权最大似然估计(TWLE)方法的优势。模拟结果表明,与现有的似然估计(MLE、WLE和TWLE)方法以及MAP估计方法相比,改进后的项目加权似然估计方法在复杂纵向IRT模型和单维IRT模型中都能更好地恢复考生的真实能力水平,尤其是在低能力和高能力水平下,偏差、均方根误差和均方根差异更小。