Svetina Dubravka, Valdivia Arturo, Underhill Stephanie, Dai Shenghai, Wang Xiaolin
Indiana University, Bloomington, IN, USA.
Appl Psychol Meas. 2017 Oct;41(7):530-544. doi: 10.1177/0146621617707507. Epub 2017 May 11.
Information about the psychometric properties of items can be highly useful in assessment development, for example, in item response theory (IRT) applications and computerized adaptive testing. Although literature on parameter recovery in unidimensional IRT abounds, less is known about parameter recovery in multidimensional IRT (MIRT), notably when tests exhibit complex structures or when latent traits are nonnormal. The current simulation study focuses on investigation of the effects of complex item structures and the shape of examinees' latent trait distributions on item parameter recovery in compensatory MIRT models for dichotomous items. Outcome variables included bias and root mean square error. Results indicated that when latent traits were skewed, item parameter recovery was generally adversely impacted. In addition, the presence of complexity contributed to decreases in the precision of parameter recovery, particularly for discrimination parameters along one dimension when at least one latent trait was generated as skewed.
关于项目心理测量特性的信息在评估开发中非常有用,例如在项目反应理论(IRT)应用和计算机自适应测试中。尽管关于单维IRT中参数恢复的文献很多,但对于多维IRT(MIRT)中的参数恢复了解较少,特别是当测试呈现复杂结构或潜在特质为非正态时。当前的模拟研究专注于调查复杂项目结构和考生潜在特质分布形状对二分项目补偿性MIRT模型中项目参数恢复的影响。结果变量包括偏差和均方根误差。结果表明,当潜在特质呈偏态时,项目参数恢复通常会受到不利影响。此外,复杂性的存在导致参数恢复精度下降,特别是当至少一个潜在特质被生成为偏态时,沿一个维度的区分参数更是如此。