Suppr超能文献

多维等级反应模型中对正态性假设的参数估计稳健性。

Robustness of Parameter Estimation to Assumptions of Normality in the Multidimensional Graded Response Model.

机构信息

a Department of Psychology , University of Minnesota.

b Department of Psychology , University of Central Florida.

出版信息

Multivariate Behav Res. 2018 May-Jun;53(3):403-418. doi: 10.1080/00273171.2018.1455572. Epub 2018 Apr 6.

Abstract

A central assumption that is implicit in estimating item parameters in item response theory (IRT) models is the normality of the latent trait distribution, whereas a similar assumption made in categorical confirmatory factor analysis (CCFA) models is the multivariate normality of the latent response variables. Violation of the normality assumption can lead to biased parameter estimates. Although previous studies have focused primarily on unidimensional IRT models, this study extended the literature by considering a multidimensional IRT model for polytomous responses, namely the multidimensional graded response model. Moreover, this study is one of few studies that specifically compared the performance of full-information maximum likelihood (FIML) estimation versus robust weighted least squares (WLS) estimation when the normality assumption is violated. The research also manipulated the number of nonnormal latent trait dimensions. Results showed that FIML consistently outperformed WLS when there were one or multiple skewed latent trait distributions. More interestingly, the bias of the discrimination parameters was non-ignorable only when the corresponding factor was skewed. Having other skewed factors did not further exacerbate the bias, whereas biases of boundary parameters increased as more nonnormal factors were added. The item parameter standard errors recovered well with both estimation algorithms regardless of the number of nonnormal dimensions.

摘要

在项目反应理论(IRT)模型中估计项目参数的一个核心假设是潜在特质分布的正态性,而在类别验证性因素分析(CCFA)模型中做出的类似假设是潜在反应变量的多元正态性。正态性假设的违反可能导致参数估计有偏差。尽管先前的研究主要集中在单维 IRT 模型上,但本研究通过考虑多维 IRT 模型对多项反应进行了扩展,即多维分级反应模型。此外,这项研究是少数专门比较完全信息最大似然(FIML)估计与稳健加权最小二乘法(WLS)估计在违反正态性假设时的性能的研究之一。研究还操纵了非正态潜在特质维度的数量。结果表明,当存在一个或多个偏态潜在特质分布时,FIML 始终优于 WLS。更有趣的是,只有当相应的因素偏态时,区分参数的偏差才不可忽略。其他偏态因素不会进一步加剧偏差,而边界参数的偏差则随着加入的非正态因素数量的增加而增加。无论非正态维度的数量如何,两种估计算法都能很好地恢复项目参数标准误差。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验