Suppr超能文献

现实世界中的机器人进化:为什么它(不)可行?

Real-World Robot Evolution: Why Would it (not) Work?

作者信息

Eiben A E

机构信息

Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.

出版信息

Front Robot AI. 2021 Jul 27;8:696452. doi: 10.3389/frobt.2021.696452. eCollection 2021.

Abstract

This paper takes a critical look at the concept of real-world robot evolution discussing specific challenges for making it practicable. After a brief review of the state of the art several enablers are discussed in detail. It is noted that sample efficient evolution is one of the key prerequisites and there are various promising directions towards this in different stages of maturity, including learning as part of the evolutionary system, genotype filtering, and hybridizing real-world evolution with simulations in a new way. Furthermore, it is emphasized that an evolutionary system that works in the real world needs robots that work in the real world. Obvious as it may seem, to achieve this significant complexification of the robots and their tasks is needed compared to the current practice. Finally, the importance of not only building but also understanding evolving robot systems is emphasised, stating that in order to have the technology work we also need the science behind it.

摘要

本文批判性地审视了现实世界中机器人进化的概念,讨论了使其可行的具体挑战。在简要回顾了当前的技术水平之后,详细讨论了几个促成因素。需要注意的是,样本高效进化是关键前提之一,在不同成熟阶段有各种有前景的发展方向,包括将学习作为进化系统的一部分、基因型过滤以及以新的方式将现实世界进化与模拟相结合。此外,强调在现实世界中运行的进化系统需要能在现实世界中工作的机器人。尽管这看似显而易见,但与当前实践相比,要实现这一点需要机器人及其任务的显著复杂化。最后,强调了不仅构建而且理解不断进化的机器人系统的重要性,指出为了使这项技术发挥作用,我们还需要其背后的科学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5164/8353392/371c7726c3aa/frobt-08-696452-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验