Jelisavcic Milan, Glette Kyrre, Haasdijk Evert, Eiben A E
Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
RITMO, Department of Informatics, University of Oslo, Oslo, Norway.
Front Robot AI. 2019 Feb 18;6:9. doi: 10.3389/frobt.2019.00009. eCollection 2019.
We study evolutionary robot systems where not only the robot brains but also the robot bodies are evolvable. Such systems need to include a learning period right after 'birth' to acquire a controller that fits the newly created body. In this paper we investigate the possibility of bootstrapping infant robot learning through employing Lamarckian inheritance of parental controllers. In our system controllers are encoded by a combination of a morphology dependent component, a Central Pattern Generator (CPG), and a morphology independent part, a Compositional Pattern Producing Network (CPPN). This makes it possible to transfer the CPPN part of controllers between different morphologies and to create a Lamarckian system. We conduct experiments with simulated modular robots whose fitness is determined by the speed of locomotion, establish the benefits of inheriting optimized parental controllers, shed light on the conditions that influence these benefits, and observe that changing the way controllers are evolved also impacts the evolved morphologies.
我们研究的进化机器人系统中,不仅机器人的大脑,而且机器人的身体都是可进化的。这样的系统在“出生”后需要有一个学习期,以获取适合新创建身体的控制器。在本文中,我们研究了通过采用父母控制器的拉马克遗传来引导婴儿机器人学习的可能性。在我们的系统中,控制器由形态相关组件(中央模式发生器,CPG)和形态无关部分(组合模式产生网络,CPPN)组合编码。这使得在不同形态之间转移控制器的CPPN部分并创建拉马克系统成为可能。我们对模拟模块化机器人进行实验,其适应性由运动速度决定,确定继承优化父母控制器的好处,阐明影响这些好处的条件,并观察到改变控制器的进化方式也会影响进化后的形态。