Suppr超能文献

元传感器:机器人技术中传感器进化的一项提议。

Metasensor: A Proposal for Sensor Evolution in Robotics.

作者信息

Braccini Michele

机构信息

Department of Computer Science and Engineering, University of Bologna, 47521 Cesena, Italy.

出版信息

Sensors (Basel). 2025 Jan 25;25(3):725. doi: 10.3390/s25030725.

Abstract

Sensors play a fundamental role in achieving the complex behaviors typically found in biological organisms. However, their potential role in the design of artificial agents is often overlooked. This often results in the design of robots that are poorly adapted to the environment, compared to their biological counterparts. This paper proposes a formalization of a novel architectural component, called a metasensor, which enables a process of sensor evolution reminiscent of what occurs in living organisms. The metasensor layer searches for the optimal interpretation of its input signals and then feeds them to the robotic agent to accomplish the assigned task. Also, the metasensor enables a robot to adapt to new tasks and dynamic, unknown environments without requiring the redesign of its hardware and software. To validate this concept, a proof of concept is presented where the metasensor changes the robot's behavior from a light avoidance task to an area avoidance task. This is achieved through two different implementations: one hand-coded and the other based on a neural network substrate, in which the network weights are evolved using an evolutionary algorithm. The results demonstrate the potential of the metasensor to modify the behavior of a robot through sensor evolution. These promising results pave the way for novel applications of the metasensor in real-world robotic scenarios, including those requiring online adaptation.

摘要

传感器在实现生物有机体中常见的复杂行为方面发挥着基础性作用。然而,它们在人工智能体设计中的潜在作用常常被忽视。这往往导致所设计的机器人与生物同类相比,对环境的适应性较差。本文提出了一种新型架构组件的形式化定义,称为元传感器,它能实现一个类似于生物体内发生的传感器进化过程。元传感器层会寻找其输入信号的最优解释,然后将这些信号反馈给机器人智能体以完成指定任务。此外,元传感器能使机器人适应新任务以及动态、未知的环境,而无需重新设计其硬件和软件。为验证这一概念,给出了一个概念验证,其中元传感器将机器人的行为从避光任务转变为避区任务。这是通过两种不同的实现方式达成的:一种是手工编码,另一种基于神经网络框架,其中网络权重使用进化算法进行演化。结果证明了元传感器通过传感器进化来改变机器人行为的潜力。这些有前景的结果为元传感器在现实世界机器人场景中的新应用铺平了道路,包括那些需要在线适应的场景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7148/11820433/3abf05be6808/sensors-25-00725-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验