Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Marbacher Weg 8, 35032, Marburg, Germany.
Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115, Bonn, Germany.
Angew Chem Int Ed Engl. 2021 Oct 18;60(43):23419-23426. doi: 10.1002/anie.202108179. Epub 2021 Sep 21.
Mechanistic insights into protein-ligand interactions can yield chemical tools for modulating protein function and enable their use for therapeutic purposes. For the homodimeric enzyme tRNA-guanine transglycosylase (TGT), a putative virulence target of shigellosis, ligand binding has been shown by crystallography to transform the functional dimer geometry into an incompetent twisted one. However, crystallographic observation of both end states does neither verify the ligand-induced transformation of one dimer into the other in solution nor does it shed light on the underlying transformation mechanism. We addressed these questions in an approach that combines site-directed spin labeling (SDSL) with distance measurements based on pulsed electron-electron double resonance (PELDOR or DEER) spectroscopy. We observed an equilibrium between the functional and twisted dimer that depends on the type of ligand, with a pyranose-substituted ligand being the most potent one in shifting the equilibrium toward the twisted dimer. Our experiments suggest a dissociation-association mechanism for the formation of the twisted dimer upon ligand binding.
对蛋白质-配体相互作用的机制研究可以提供用于调节蛋白质功能的化学工具,并使其能够用于治疗目的。对于同源二聚体酶 tRNA-鸟嘌呤转糖基酶(TGT),一种志贺氏菌病的潜在毒力靶点,晶体学研究表明,配体的结合将功能二聚体的几何形状转化为无能力的扭曲形状。然而,晶体学观察到的两种末端状态既不能验证配体诱导的溶液中二聚体之一向另一个的转化,也不能揭示潜在的转化机制。我们通过一种结合了定点自旋标记(SDSL)和基于脉冲电子-电子双共振(PELDOR 或 DEER)光谱的距离测量的方法来解决这些问题。我们观察到功能二聚体和扭曲二聚体之间的平衡取决于配体的类型,其中吡喃糖取代的配体在将平衡向扭曲二聚体转移方面最为有效。我们的实验表明,配体结合形成扭曲二聚体的机制是解离-缔合机制。