Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA.
Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA.
Science. 2019 May 17;364(6441):689-692. doi: 10.1126/science.aav9406.
The ATP-binding cassette subfamily B member 1 (ABCB1) multidrug transporter P-glycoprotein plays a central role in clearance of xenobiotics in humans and is implicated in cancer resistance to chemotherapy. We used double electron electron resonance spectroscopy to uncover the basis of stimulation of P-glycoprotein adenosine 5'-triphosphate (ATP) hydrolysis by multiple substrates and illuminate how substrates and inhibitors differentially affect its transport function. Our results reveal that substrate-induced acceleration of ATP hydrolysis correlates with stabilization of a high-energy, post-ATP hydrolysis state characterized by structurally asymmetric nucleotide-binding sites. By contrast, this state is destabilized in the substrate-free cycle and by high-affinity inhibitors in favor of structurally symmetric nucleotide binding sites. Together with previous data, our findings lead to a general model of substrate and inhibitor coupling to P-glycoprotein.
三磷酸腺苷结合盒亚家族 B 成员 1(ABCB1)多药转运蛋白 P-糖蛋白在清除人体中的外源性物质方面发挥着核心作用,并且与癌症对化疗的耐药性有关。我们使用双电子电子共振光谱技术揭示了多种底物刺激 P-糖蛋白三磷酸腺苷(ATP)水解的基础,并阐明了底物和抑制剂如何不同地影响其转运功能。我们的结果表明,底物诱导的 ATP 水解加速与稳定高能、后 ATP 水解状态相关,该状态的特征是核苷酸结合位点结构不对称。相比之下,在无底物循环和高亲和力抑制剂的情况下,这种状态不稳定,有利于结构对称的核苷酸结合。结合以前的数据,我们的发现导致了一个将底物和抑制剂与 P-糖蛋白偶联的一般模型。