Suppr超能文献

全面淋巴结乳房 VMAT:使用基于迭代知识的放射治疗计划解决方案解决低剂量冲洗困境。

Comprehensive nodal breast VMAT: solving the low-dose wash dilemma using an iterative knowledge-based radiotherapy planning solution.

机构信息

Radiation Oncology Department, Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, New South Wales, Australia.

Northern Clinical School, University of Sydney, St Leonards, New South Wales, Australia.

出版信息

J Med Radiat Sci. 2022 Mar;69(1):85-97. doi: 10.1002/jmrs.534. Epub 2021 Aug 12.

Abstract

INTRODUCTION

Aimed to develop a simple and robust volumetric modulated arc radiotherapy (VMAT) solution for comprehensive lymph node (CLN) breast cancer without increase in low-dose wash.

METHODS

Forty CLN-breast patient data sets were utilised to develop a knowledge-based planning (KBP) VMAT model, which limits low-dose wash using iterative learning and base-tangential methods as benchmark. Another twenty data sets were employed to validate the model comparing KBP-generated ipsilateral VMAT (ipsi-VMAT) plans against the benchmarked hybrid (h)-VMAT (departmental standard) and bowtie-VMAT (published best practice) methods. Planning target volume (PTV), conformity/homogeneity index (CI/HI), organ-at-risk (OAR), remaining-volume-at-risk (RVR) and blinded radiation oncologist (RO) plan preference were evaluated.

RESULTS

Ipsi- and bowtie-VMAT plans were dosimetrically equivalent, achieving greater nodal target coverage (P < 0.05) compared to h-VMAT with minor reduction in breast coverage. CI was enhanced for a small reduction in breast HI with improved dose sparing to ipsilateral-lung and humeral head (P < 0.05) at immaterial expense to spinal cord. Significantly, low-dose wash to OARs and RVR were comparable between all plan types demonstrating a simple VMAT class solution robust to patient-specific anatomic variation can be applied to CLN breast without need for complex beam modification (hybrid plans, avoidance sectors or other). This result was supported by blinded RO review.

CONCLUSIONS

A simple and robust ipsilateral VMAT class solution for CLN breast generated using iterative KBP modelling can achieve clinically acceptable target coverage and OAR sparing without unwanted increase in low-dose wash associated with increased second malignancy risk.

摘要

简介

旨在开发一种简单而强大的容积调强弧形放疗(VMAT)解决方案,用于治疗不增加低剂量照射的综合淋巴结(CLN)乳腺癌。

方法

利用 40 例 CLN 乳腺癌患者数据集开发了基于知识的计划(KBP)VMAT 模型,该模型使用迭代学习和基底切线方法限制低剂量冲洗,作为基准。另外 20 个数据集被用于验证模型,将 KBP 生成的同侧 VMAT(ipsi-VMAT)计划与基准混合(h)-VMAT(部门标准)和 bowtie-VMAT(已发表的最佳实践)方法进行比较。评估了计划靶区(PTV)、适形性/均匀性指数(CI/HI)、器官风险(OAR)、残余风险体积(RVR)和盲法放疗医师(RO)计划偏好。

结果

ipsi-VMAT 和 bowtie-VMAT 计划在剂量学上等效,与 h-VMAT 相比,实现了更大的淋巴结靶区覆盖率(P<0.05),同时对乳房覆盖率的影响较小。CI 得到了改善,同时乳房 HI 略有降低,同侧肺和肱骨头的剂量得到了更好的保护(P<0.05),而对脊髓的影响可以忽略不计。重要的是,所有计划类型的 OAR 和 RVR 的低剂量冲洗都相当,表明一种简单的 VMAT 类解决方案对 CLN 乳腺癌具有强大的稳健性,能够在不增加复杂射束修改(混合计划、避照区或其他)的情况下应用于 CLN 乳腺癌。这一结果得到了盲法 RO 审查的支持。

结论

使用迭代 KBP 建模为 CLN 乳房生成的简单而强大的同侧 VMAT 类解决方案可以实现临床可接受的靶区覆盖率和 OAR 保护,而不会增加与增加第二恶性肿瘤风险相关的不必要的低剂量冲洗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验