Radiation Oncology Department, Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, New South Wales, Australia.
Northern Clinical School, University of Sydney, St Leonards, New South Wales, Australia.
J Med Radiat Sci. 2022 Mar;69(1):85-97. doi: 10.1002/jmrs.534. Epub 2021 Aug 12.
Aimed to develop a simple and robust volumetric modulated arc radiotherapy (VMAT) solution for comprehensive lymph node (CLN) breast cancer without increase in low-dose wash.
Forty CLN-breast patient data sets were utilised to develop a knowledge-based planning (KBP) VMAT model, which limits low-dose wash using iterative learning and base-tangential methods as benchmark. Another twenty data sets were employed to validate the model comparing KBP-generated ipsilateral VMAT (ipsi-VMAT) plans against the benchmarked hybrid (h)-VMAT (departmental standard) and bowtie-VMAT (published best practice) methods. Planning target volume (PTV), conformity/homogeneity index (CI/HI), organ-at-risk (OAR), remaining-volume-at-risk (RVR) and blinded radiation oncologist (RO) plan preference were evaluated.
Ipsi- and bowtie-VMAT plans were dosimetrically equivalent, achieving greater nodal target coverage (P < 0.05) compared to h-VMAT with minor reduction in breast coverage. CI was enhanced for a small reduction in breast HI with improved dose sparing to ipsilateral-lung and humeral head (P < 0.05) at immaterial expense to spinal cord. Significantly, low-dose wash to OARs and RVR were comparable between all plan types demonstrating a simple VMAT class solution robust to patient-specific anatomic variation can be applied to CLN breast without need for complex beam modification (hybrid plans, avoidance sectors or other). This result was supported by blinded RO review.
A simple and robust ipsilateral VMAT class solution for CLN breast generated using iterative KBP modelling can achieve clinically acceptable target coverage and OAR sparing without unwanted increase in low-dose wash associated with increased second malignancy risk.
旨在开发一种简单而强大的容积调强弧形放疗(VMAT)解决方案,用于治疗不增加低剂量照射的综合淋巴结(CLN)乳腺癌。
利用 40 例 CLN 乳腺癌患者数据集开发了基于知识的计划(KBP)VMAT 模型,该模型使用迭代学习和基底切线方法限制低剂量冲洗,作为基准。另外 20 个数据集被用于验证模型,将 KBP 生成的同侧 VMAT(ipsi-VMAT)计划与基准混合(h)-VMAT(部门标准)和 bowtie-VMAT(已发表的最佳实践)方法进行比较。评估了计划靶区(PTV)、适形性/均匀性指数(CI/HI)、器官风险(OAR)、残余风险体积(RVR)和盲法放疗医师(RO)计划偏好。
ipsi-VMAT 和 bowtie-VMAT 计划在剂量学上等效,与 h-VMAT 相比,实现了更大的淋巴结靶区覆盖率(P<0.05),同时对乳房覆盖率的影响较小。CI 得到了改善,同时乳房 HI 略有降低,同侧肺和肱骨头的剂量得到了更好的保护(P<0.05),而对脊髓的影响可以忽略不计。重要的是,所有计划类型的 OAR 和 RVR 的低剂量冲洗都相当,表明一种简单的 VMAT 类解决方案对 CLN 乳腺癌具有强大的稳健性,能够在不增加复杂射束修改(混合计划、避照区或其他)的情况下应用于 CLN 乳腺癌。这一结果得到了盲法 RO 审查的支持。
使用迭代 KBP 建模为 CLN 乳房生成的简单而强大的同侧 VMAT 类解决方案可以实现临床可接受的靶区覆盖率和 OAR 保护,而不会增加与增加第二恶性肿瘤风险相关的不必要的低剂量冲洗。