Suppr超能文献

第二部分:克朗巴哈系数的使用、误用及非常有限的有用性:讨论下限和相关误差。

Part II: On the Use, the Misuse, and the Very Limited Usefulness of Cronbach's Alpha: Discussing Lower Bounds and Correlated Errors.

机构信息

Department of Methodology and Statistics TSB, Tilburg University, PO Box 90153, 5000 LE, Tilburg, The Netherlands.

Ulm University, Ulm, Germany.

出版信息

Psychometrika. 2021 Dec;86(4):843-860. doi: 10.1007/s11336-021-09789-8. Epub 2021 Aug 13.

Abstract

Prior to discussing and challenging two criticisms on coefficient [Formula: see text], the well-known lower bound to test-score reliability, we discuss classical test theory and the theory of coefficient [Formula: see text]. The first criticism expressed in the psychometrics literature is that coefficient [Formula: see text] is only useful when the model of essential [Formula: see text]-equivalence is consistent with the item-score data. Because this model is highly restrictive, coefficient [Formula: see text] is smaller than test-score reliability and one should not use it. We argue that lower bounds are useful when they assess product quality features, such as a test-score's reliability. The second criticism expressed is that coefficient [Formula: see text] incorrectly ignores correlated errors. If correlated errors would enter the computation of coefficient [Formula: see text], theoretical values of coefficient [Formula: see text] could be greater than the test-score reliability. Because quality measures that are systematically too high are undesirable, critics dismiss coefficient [Formula: see text]. We argue that introducing correlated errors is inconsistent with the derivation of the lower bound theorem and that the properties of coefficient [Formula: see text] remain intact when data contain correlated errors.

摘要

在讨论和挑战系数[Formula: see text](一种用于测试分数可靠性的指标)的两个批评之前,我们先讨论经典测试理论和系数[Formula: see text]理论。心理测量学文献中表达的第一个批评是,只有当基本[Formula: see text]-等效模型与项目分数数据一致时,系数[Formula: see text]才有用。因为这个模型非常严格,所以系数[Formula: see text]比测试分数的可靠性小,人们不应该使用它。我们认为,当它们评估产品质量特征(如测试分数的可靠性)时,下限是有用的。表达的第二个批评是,系数[Formula: see text]错误地忽略了相关错误。如果相关错误会进入系数[Formula: see text]的计算,那么系数[Formula: see text]的理论值可能会大于测试分数的可靠性。由于质量指标过高是不可取的,批评者因此否定了系数[Formula: see text]。我们认为,引入相关错误与下限定理的推导不一致,并且当数据包含相关错误时,系数[Formula: see text]的性质仍然保持不变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c787/8636457/fe73b5b6e253/11336_2021_9789_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验