Suppr超能文献

基于深度学习算法(DLA)与不同经验水平放射科医师检测和 PI-RADS 分类前列腺 MRI 局灶性病变的效能比较。

Detection and PI-RADS classification of focal lesions in prostate MRI: Performance comparison between a deep learning-based algorithm (DLA) and radiologists with various levels of experience.

机构信息

Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea; Department of Radiology, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 1021 Seoul, Republic of Korea.

出版信息

Eur J Radiol. 2021 Sep;142:109894. doi: 10.1016/j.ejrad.2021.109894. Epub 2021 Aug 5.

Abstract

PURPOSE

To compare the performance of lesion detection and Prostate Imaging-Reporting and Data System (PI-RADS) classification between a deep learning-based algorithm (DLA), clinical reports and radiologists with different levels of experience in prostate MRI.

METHODS

This retrospective study included 121 patients who underwent prebiopsy MRI and prostate biopsy. More than five radiologists (Reader groups 1, 2: residents; Readers 3, 4: less-experienced radiologists; Reader 5: expert) independently reviewed biparametric MRI (bpMRI). The DLA results were obtained using bpMRI. The reference standard was based on pathologic reports. The diagnostic performance of the PI-RADS classification of DLA, clinical reports, and radiologists was analyzed using AUROC. Dichotomous analysis (PI-RADS cutoff value ≥ 3 or 4) was performed, and the sensitivities and specificities were compared using McNemar's test.

RESULTS

Clinically significant cancer [CSC, Gleason score ≥ 7] was confirmed in 43 patients (35.5%). The AUROC of the DLA (0.828) for diagnosing CSC was significantly higher than that of Reader 1 (AUROC, 0.706; p = 0.011), significantly lower than that of Reader 5 (AUROC, 0.914; p = 0.013), and similar to clinical reports and other readers (p = 0.060-0.661). The sensitivity of DLA (76.7%) was comparable to those of all readers and the clinical reports at a PI-RADS cutoff value ≥ 4. The specificity of the DLA (85.9%) was significantly higher than those of clinical reports and Readers 2-3 and comparable to all others at a PI-RADS cutoff value ≥ 4.

CONCLUSIONS

The DLA showed moderate diagnostic performance at a level between those of residents and an expert in detecting and classifying according to PI-RADS. The performance of DLA was similar to that of clinical reports from various radiologists in clinical practice.

摘要

目的

比较基于深度学习的算法(DLA)、临床报告和不同经验水平的放射科医生在前列腺 MRI 中的病变检测和前列腺影像报告和数据系统(PI-RADS)分类的性能。

方法

本回顾性研究纳入了 121 名接受前列腺 MRI 术前活检和前列腺活检的患者。五位以上放射科医生(Reader 组 1、2:住院医师;Reader 组 3、4:经验较少的放射科医生;Reader 组 5:专家)分别独立阅片双参数 MRI(bpMRI)。使用 bpMRI 获得 DLA 的结果。参考标准基于病理报告。使用 AUROC 分析 DLA、临床报告和放射科医生的 PI-RADS 分类的诊断性能。进行二项分析(PI-RADS 截断值≥3 或 4),并使用 McNemar 检验比较敏感性和特异性。

结果

43 名患者(35.5%)被确诊为临床显著癌症[CSC,Gleason 评分≥7]。DLA (0.828)诊断 CSC 的 AUROC 显著高于 Reader 组 1(AUROC,0.706;p=0.011),显著低于 Reader 组 5(AUROC,0.914;p=0.013),与临床报告和其他读者相似(p=0.060-0.661)。DLA 的灵敏度(76.7%)与所有读者和临床报告在 PI-RADS 截断值≥4 时相当。DLA 的特异性(85.9%)显著高于临床报告和 Reader 组 2-3,与 PI-RADS 截断值≥4 时的所有其他读者相似。

结论

DLA 在检测和按 PI-RADS 分类方面的诊断性能处于住院医师和专家之间的中等水平。DLA 的性能与临床实践中来自不同放射科医生的临床报告相似。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验