为什么锻炼能增强肌肉:titin 机械感觉控制负荷下的骨骼肌生长。

Why exercise builds muscles: titin mechanosensing controls skeletal muscle growth under load.

机构信息

Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom.

Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom.

出版信息

Biophys J. 2021 Sep 7;120(17):3649-3663. doi: 10.1016/j.bpj.2021.07.023. Epub 2021 Aug 10.

Abstract

Muscles sense internally generated and externally applied forces, responding to these in a coordinated hierarchical manner at different timescales. The center of the basic unit of the muscle, the sarcomeric M-band, is perfectly placed to sense the different types of load to which the muscle is subjected. In particular, the kinase domain of titin (TK) located at the M-band is a known candidate for mechanical signaling. Here, we develop a quantitative mathematical model that describes the kinetics of TK-based mechanosensitive signaling and predicts trophic changes in response to exercise and rehabilitation regimes. First, we build the kinetic model for TK conformational changes under force: opening, phosphorylation, signaling, and autoinhibition. We find that TK opens as a metastable mechanosensitive switch, which naturally produces a much greater signal after high-load resistance exercise than an equally energetically costly endurance effort. Next, for the model to be stable and give coherent predictions, in particular for the lag after the onset of an exercise regime, we have to account for the associated kinetics of phosphate (carried by ATP) and for the nonlinear dependence of protein synthesis rates on muscle fiber size. We suggest that the latter effect may occur via the steric inhibition of ribosome diffusion through the sieve-like myofilament lattice. The full model yields a steady-state solution (homeostasis) for muscle cross-sectional area and tension and, a quantitatively plausible hypertrophic response to training, as well as atrophy after an extended reduction in tension.

摘要

肌肉感知内部产生和外部施加的力,并在不同的时间尺度上以协调的层次结构对这些力做出响应。肌节 M 带是肌肉基本单元的中心,它完美地定位以感知肌肉所承受的不同类型的负荷。特别是,位于 M 带的肌联蛋白 (TK) 的激酶结构域是机械信号传递的已知候选者。在这里,我们开发了一个定量数学模型,该模型描述了基于 TK 的机械敏感信号转导的动力学,并预测了运动和康复方案对营养变化的影响。首先,我们构建了力作用下 TK 构象变化的动力学模型:开放、磷酸化、信号转导和自动抑制。我们发现,TK 作为一种亚稳态机械敏感开关打开,在高负荷阻力运动后自然产生比同等能量消耗的耐力运动更大的信号。接下来,为了使模型稳定并给出一致的预测,特别是在运动方案开始后的滞后,我们必须考虑到相关的磷酸化动力学(由 ATP 携带)以及蛋白质合成率对肌肉纤维大小的非线性依赖性。我们认为,后一种效应可能是通过核糖体通过筛状肌丝晶格扩散的空间位阻抑制来发生的。全模型产生肌肉横截面积和张力的稳态解(平衡),以及对训练的定量合理的肥大反应,以及在张力长时间降低后的萎缩。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b77c/8456289/e179559a81d3/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索