Suppr超能文献

三阴性乳腺癌的驱动因素和抑制因素。

Drivers and suppressors of triple-negative breast cancer.

机构信息

Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204.

Department of Oncology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, 210000 Nanjing, China.

出版信息

Proc Natl Acad Sci U S A. 2021 Aug 17;118(33). doi: 10.1073/pnas.2104162118.

Abstract

To identify regulators of triple-negative breast cancer (TNBC), gene expression profiles of malignant parts of TNBC (mTNBC) and normal adjacent (nadj) parts of the same breasts have been compared. We are interested in the roles of estrogen receptor β (ERβ) and the cytochrome P450 family (CYPs) as drivers of TNBC. We examined by RNA sequencing the mTNBC and nadj parts of five women. We found more than a fivefold elevation in mTNBC of genes already known to be expressed in TNBC: BIRC5/survivin, Wnt-10A and -7B, matrix metalloproteinases (MMPs), chemokines, anterior gradient proteins, and lysophosphatidic acid receptor and the known basal characteristics of TNBC, sox10, ROPN1B, and Col9a3. There were two unexpected findings: 1) a strong induction of CYPs involved in activation of fatty acids (CYP4), and in inactivation of calcitriol (CYP24A1) and retinoic acid (CYP26A1); and 2) a marked down-regulation of FOS, FRA1, and JUN, known tethering partners of ERβ. ERβ is expressed in 20 to 30% of TNBCs and is being evaluated as a target for treating TNBC. We used ERβ TNBC patient-derived xenografts in mice and found that the ERβ agonist LY500703 had no effect on growth or proliferation. Expression of CYPs was confirmed by immunohistochemistry in formalin-fixed and paraffin-embedded (FFPE) TNBC. In TNBC cell lines, the CYP4Z1-catalyzed fatty acid metabolite 20-hydroxyeicosatetraenoic acid (20-HETE) increased proliferation, while calcitriol decreased proliferation but only after inhibition of CYP24A1. We conclude that CYP-mediated pathways can be drivers of TNBC but that ERβ is unlikely to be a tumor suppressor because the absence of its main tethering partners renders ERβ functionless on genes involved in proliferation and inflammation.

摘要

为了鉴定三阴性乳腺癌 (TNBC) 的调控因子,我们比较了 TNBC 的恶性部分 (mTNBC) 和同一乳房的正常相邻部分 (nadj) 的基因表达谱。我们对雌激素受体 β (ERβ) 和细胞色素 P450 家族 (CYPs) 作为 TNBC 驱动因素的作用感兴趣。我们通过 RNA 测序检查了五名女性的 mTNBC 和 nadj 部分。我们发现,已经在 TNBC 中表达的基因在 mTNBC 中升高了五倍以上:BIRC5/survivin、Wnt-10A 和 -7B、基质金属蛋白酶 (MMPs)、趋化因子、前梯度蛋白和溶血磷脂酸受体以及 TNBC 的已知基底特征 sox10、ROPN1B 和 Col9a3。有两个意外的发现:1) 参与脂肪酸激活的 CYPs(CYP4)和钙三醇失活(CYP24A1)和维甲酸(CYP26A1)的强烈诱导;2) FOS、FRA1 和 JUN 的明显下调,已知 ERβ 的连接伙伴。ERβ 在 20% 至 30% 的 TNBC 中表达,正在作为治疗 TNBC 的靶点进行评估。我们在小鼠中使用 ERβ TNBC 患者衍生的异种移植物,发现 ERβ 激动剂 LY500703 对生长或增殖没有影响。通过免疫组织化学在福尔马林固定和石蜡包埋 (FFPE) 的 TNBC 中证实了 CYP 的表达。在 TNBC 细胞系中,CYP4Z1 催化的脂肪酸代谢物 20-羟二十碳四烯酸 (20-HETE) 增加了增殖,而钙三醇降低了增殖,但仅在抑制 CYP24A1 后才降低。我们得出结论,CYP 介导的途径可能是 TNBC 的驱动因素,但 ERβ 不太可能是肿瘤抑制因子,因为其主要连接伙伴的缺失使 ERβ 在参与增殖和炎症的基因上失去功能。

相似文献

1
Drivers and suppressors of triple-negative breast cancer.
Proc Natl Acad Sci U S A. 2021 Aug 17;118(33). doi: 10.1073/pnas.2104162118.
2
Research resource: global identification of estrogen receptor β target genes in triple negative breast cancer cells.
Mol Endocrinol. 2013 Oct;27(10):1762-75. doi: 10.1210/me.2013-1164. Epub 2013 Aug 26.
6
Estrogen receptor β selective agonists reduce invasiveness of triple-negative breast cancer cells.
Int J Oncol. 2015 Feb;46(2):878-84. doi: 10.3892/ijo.2014.2778. Epub 2014 Nov 25.
7
Contrasting activities of estrogen receptor beta isoforms in triple negative breast cancer.
Breast Cancer Res Treat. 2021 Jan;185(2):281-292. doi: 10.1007/s10549-020-05948-0. Epub 2020 Oct 1.
8
Estrogen receptor beta increases sensitivity to enzalutamide in androgen receptor-positive triple-negative breast cancer.
J Cancer Res Clin Oncol. 2019 May;145(5):1221-1233. doi: 10.1007/s00432-019-02872-9. Epub 2019 Feb 25.
10

引用本文的文献

1
Transcriptomic Profile of Perineural Invasion in Prostate Cancer Identifies Prognostic Gene Signatures.
Biomedicines. 2025 Jul 22;13(8):1789. doi: 10.3390/biomedicines13081789.
3
Patterns of immune evasion in triple-negative breast cancer and new potential therapeutic targets: a review.
Front Immunol. 2024 Dec 13;15:1513421. doi: 10.3389/fimmu.2024.1513421. eCollection 2024.
5
Brca1 haploinsufficiency promotes early tumor onset and epigenetic alterations in a mouse model of hereditary breast cancer.
Nat Genet. 2024 Dec;56(12):2763-2775. doi: 10.1038/s41588-024-01958-6. Epub 2024 Nov 11.
7
Network-based approach elucidates critical genes in BRCA subtypes and chemotherapy response in triple negative breast cancer.
iScience. 2024 Apr 16;27(5):109752. doi: 10.1016/j.isci.2024.109752. eCollection 2024 May 17.

本文引用的文献

1
Ventral prostate and mammary gland phenotype in mice with complete deletion of the ERβ gene.
Proc Natl Acad Sci U S A. 2020 Mar 3;117(9):4902-4909. doi: 10.1073/pnas.1920478117. Epub 2020 Feb 19.
3
Warburg effect and its role in tumourigenesis.
Arch Pharm Res. 2019 Oct;42(10):833-847. doi: 10.1007/s12272-019-01185-2. Epub 2019 Aug 31.
4
Notch Signaling Activation as a Hallmark for Triple-Negative Breast Cancer Subtype.
J Oncol. 2019 Jul 11;2019:8707053. doi: 10.1155/2019/8707053. eCollection 2019.
5
Impact of CXCR4 and CXCR7 knockout by CRISPR/Cas9 on the function of triple-negative breast cancer cells.
Onco Targets Ther. 2019 May 17;12:3849-3858. doi: 10.2147/OTT.S195661. eCollection 2019.
8
Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer.
Crit Rev Oncol Hematol. 2019 May;137:57-83. doi: 10.1016/j.critrevonc.2019.02.010. Epub 2019 Mar 3.
9
Update on ERbeta.
J Steroid Biochem Mol Biol. 2019 Jul;191:105312. doi: 10.1016/j.jsbmb.2019.02.007. Epub 2019 Apr 14.
10
Estrogen receptor-beta is a potential target for triple negative breast cancer treatment.
Oncotarget. 2018 Sep 21;9(74):33912-33930. doi: 10.18632/oncotarget.26089.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验