Suppr超能文献

利用可解释机器学习和高通量多属性筛选发现新型锂固体电解质界面(SEI)和阳极涂层

Discovery of novel Li SSE and anode coatings using interpretable machine learning and high-throughput multi-property screening.

作者信息

Honrao Shreyas J, Yang Xin, Radhakrishnan Balachandran, Kuwata Shigemasa, Komatsu Hideyuki, Ohma Atsushi, Sierhuis Maarten, Lawson John W

机构信息

KBR Wyle, Intelligent Systems Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA.

Research Division, Nissan North America, Santa Clara, CA, 95051, USA.

出版信息

Sci Rep. 2021 Aug 13;11(1):16484. doi: 10.1038/s41598-021-94275-5.

Abstract

All-solid-state batteries with Li metal anode can address the safety issues surrounding traditional Li-ion batteries as well as the demand for higher energy densities. However, the development of solid electrolytes and protective anode coatings possessing high ionic conductivity and good stability with Li metal has proven to be a challenge. Here, we present our informatics approach to explore the Li compound space for promising electrolytes and anode coatings using high-throughput multi-property screening and interpretable machine learning. To do this, we generate a database of battery-related materials properties by computing [Formula: see text] migration barriers and stability windows for over 15,000 Li-containing compounds from Materials Project. We screen through the database for candidates with good thermodynamic and electrochemical stabilities, and low [Formula: see text] migration barriers, identifying promising new candidates such as [Formula: see text]N, [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text], among others. We train machine learning models, using ensemble methods, to predict migration barriers and oxidation and reduction potentials of these compounds by engineering input features that ensure accuracy and interpretability. Using only a small number of features, our gradient boosting regression models achieve [Formula: see text] values of 0.95 and 0.92 on the oxidation and reduction potential prediction tasks, respectively, and 0.86 on the migration barrier prediction task. Finally, we use Shapley additive explanations and permutation feature importance analyses to interpret our machine learning predictions and identify materials properties with the largest impact on predictions in our models. We show that our approach has the potential to enable rapid discovery and design of novel solid electrolytes and anode coatings.

摘要

具有锂金属负极的全固态电池能够解决传统锂离子电池存在的安全问题,同时满足对更高能量密度的需求。然而,开发具有高离子电导率且与锂金属具有良好稳定性的固体电解质和保护性负极涂层已被证明是一项挑战。在此,我们展示了一种信息学方法,通过高通量多性能筛选和可解释的机器学习来探索锂化合物空间,以寻找有前景的电解质和负极涂层。为此,我们通过计算来自材料项目的15000多种含锂化合物的[公式:见原文]迁移势垒和稳定性窗口,生成了一个与电池相关材料性能的数据库。我们在数据库中筛选出具有良好热力学和电化学稳定性以及低[公式:见原文]迁移势垒的候选材料,识别出有前景的新候选材料,如[公式:见原文]N、[公式:见原文]、[公式:见原文]、[公式:见原文]和[公式:见原文]等。我们使用集成方法训练机器学习模型,通过设计确保准确性和可解释性的输入特征来预测这些化合物的迁移势垒以及氧化和还原电位。仅使用少量特征,我们的梯度提升回归模型在氧化电位预测任务上的[公式:见原文]值分别为0.95,在还原电位预测任务上为0.92,在迁移势垒预测任务上为0.86。最后,我们使用夏普利加法解释和排列特征重要性分析来解释我们的机器学习预测,并识别出对模型预测影响最大的材料性能。我们表明,我们的方法有潜力实现新型固体电解质和负极涂层的快速发现和设计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/764c/8363752/2002f9a8ef56/41598_2021_94275_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验