School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
Small. 2021 Sep;17(38):e2102128. doi: 10.1002/smll.202102128. Epub 2021 Aug 12.
The trade-off between thermal conductivity (κ) and thermal contact resistance (R ) is regarded as a hurdle to develop superior interface materials for thermal management. Here a high-temperature skin softening material to overcome the trade-off relationship, realizing a record-high total thermal conductance (254.92 mW mm K ) for isotropic pad-type interface materials is introduced. A highly conductive hard core is constructed by incorporating Ag flakes and silver nanoparticle-decorated multiwalled carbon nanotubes in thermosetting epoxy (EP). The thin soft skin is composed of filler-embedded thermoplastic poly(ethylene-co-vinyl acetate) (PEVA). The κ (82.8 W m K ) of the PEVA-EP-PEVA interface material is only slightly compromised, compared with that (106.5 W m K ) of the EP core (386 µm). However, the elastic modulus (E = 2.10 GPa) at the skin is significantly smaller than the EP (26.28 GPa), enhancing conformality and decreasing R from 108.41 to 78.73 mm K W . The thermoplastic skin is further softened at an elevated temperature (100 °C), dramatically decreasing E (0.19 GPa) and R (0.17 mm K W ) with little change in κ, overcoming the trade-off relationship and enhancing the total thermal conductance by 2030%. The successful heat dissipation and applicability to the continuous manufacturing process demonstrate excellent feasibility as future thermal management materials.
热导率 (κ) 和热接触电阻 (R) 之间的权衡被认为是开发用于热管理的优异界面材料的障碍。在这里,介绍了一种高温软化材料,以克服这种权衡关系,实现各向同性垫型界面材料的创纪录的总热导率 (254.92 mW mm K)。通过在热固性环氧树脂 (EP) 中加入 Ag 薄片和银纳米粒子修饰的多壁碳纳米管,构建了高导电性硬芯。薄的软皮由填充有填料的热塑性聚乙烯-醋酸乙烯共聚物 (PEVA) 组成。与 EP 芯 (386 µm) 的 κ (82.8 W m K) 相比,PEVA-EP-PEVA 界面材料的 κ (82.8 W m K) 仅略有降低 (106.5 W m K)。然而,表皮的弹性模量 (E = 2.10 GPa) 明显小于 EP (26.28 GPa),从而增强了贴合性并将 R 从 108.41 降低至 78.73 mm K W。热塑性表皮在较高温度 (100°C) 下进一步软化,E (0.19 GPa) 和 R (0.17 mm K W) 显著降低,而 κ 变化不大,克服了权衡关系并将总热导率提高了 2030%。成功的散热和对连续制造工艺的适用性证明了作为未来热管理材料的出色可行性。