Suppr超能文献

用于增强能量收集的3D临时磁化软机器人结构

3D Temporary-Magnetized Soft Robotic Structures for Enhanced Energy Harvesting.

作者信息

Miao Liming, Song Yu, Ren Zhongyang, Xu Chen, Wan Ji, Wang Haobin, Guo Hang, Xiang Zehua, Han Mengdi, Zhang Haixia

机构信息

National Key Lab of Nano/Micro Fabrication Technology, Institute of Microelectronics, Peking University, Beijing, 100871, China.

Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA.

出版信息

Adv Mater. 2021 Oct;33(40):e2102691. doi: 10.1002/adma.202102691. Epub 2021 Aug 15.

Abstract

The advent of functional materials offers tremendous potential in a broad variety of areas such as electronics, robotics, and energy devices. Magnetic materials are an attractive candidate that enable multifunctional devices with capabilities in both sensing and actuation. However, current magnetic devices, especially those with complex motion modalities, rely on permanently magnetized materials with complicated, non-uniform magnetization profiles. Here, based on magnetic materials with temporary-magnetization, a mechanically guided assembly process successfully converts laser-patterned 2D magnetic materials into judiciously engineered 3D structures, with dimensions and geometries ranging from mesoscale 3D filaments, to arrayed centimeter-scale 3D membranes. With tailorable mechanical properties and highly adjustable geometries, 3D soft structures can exhibit various tethered locomotions under the precise control of magnetic fields, including local deformation, unidirectional tilting, and omnidirectional rotation, and can serve as dynamic surfaces for further integration with other functional materials or devices. Examples demonstrated here focus on energy-harvesting systems, including 3D piezoelectric devices for noncontact conversion of mechanical energy and active motion sensing, as well as 3D solar tracking systems. The design strategy and resulting magnetic-controlled 3D soft structures hold great promise not only for enhanced energy harvesting, but also for multimodal sensing, robotic interfaces, and biomedical devices.

摘要

功能材料的出现为电子、机器人技术和能源设备等广泛领域带来了巨大潜力。磁性材料是一种有吸引力的选择,能够实现具有传感和驱动功能的多功能设备。然而,目前的磁性设备,尤其是那些具有复杂运动模式的设备,依赖于具有复杂、非均匀磁化分布的永久磁化材料。在此,基于具有临时磁化特性的磁性材料,一种机械引导的组装过程成功地将激光图案化的二维磁性材料转化为经过精心设计的三维结构,其尺寸和几何形状从中尺度的三维细丝到排列的厘米级三维膜不等。具有可定制的机械性能和高度可调节的几何形状,三维软结构可以在磁场的精确控制下表现出各种束缚运动,包括局部变形、单向倾斜和全方位旋转,并且可以作为动态表面与其他功能材料或设备进一步集成。这里展示的例子集中在能量收集系统,包括用于机械能非接触转换和主动运动传感的三维压电器件,以及三维太阳能跟踪系统。所提出的设计策略和由此产生的磁控三维软结构不仅在增强能量收集方面,而且在多模态传感、机器人接口和生物医学设备方面都具有巨大的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验