文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

受生物启发的3D柔性器件与功能系统。

Bioinspired 3D flexible devices and functional systems.

作者信息

Cheng Xu, Shen Zhangming, Zhang Yihui

机构信息

Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing  100084, China.

Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing  100084, China.

出版信息

Natl Sci Rev. 2023 Dec 13;11(3):nwad314. doi: 10.1093/nsr/nwad314. eCollection 2024 Mar.


DOI:10.1093/nsr/nwad314
PMID:38312384
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10833470/
Abstract

Flexible devices and functional systems with elaborated three-dimensional (3D) architectures can endow better mechanical/electrical performances, more design freedom, and unique functionalities, when compared to their two-dimensional (2D) counterparts. Such 3D flexible devices/systems are rapidly evolving in three primary directions, including the miniaturization, the increasingly merged physical/artificial intelligence and the enhanced adaptability and capabilities of heterogeneous integration. Intractable challenges exist in this emerging research area, such as relatively poor controllability in the locomotion of soft robotic systems, mismatch of bioelectronic interfaces, and signal coupling in multi-parameter sensing. By virtue of long-time-optimized materials, structures and processes, natural organisms provide rich sources of inspiration to address these challenges, enabling the design and manufacture of many bioinspired 3D flexible devices/systems. In this Review, we focus on bioinspired 3D flexible devices and functional systems, and summarize their representative design concepts, manufacturing methods, principles of structure-function relationship and broad-ranging applications. Discussions on existing challenges, potential solutions and future opportunities are also provided to usher in further research efforts toward realizing bioinspired 3D flexible devices/systems with precisely programmed shapes, enhanced mechanical/electrical performances, and high-level physical/artificial intelligence.

摘要

与二维(2D)同类产品相比,具有精细三维(3D)架构的柔性器件和功能系统能够赋予更好的机械/电气性能、更大的设计自由度和独特的功能。此类3D柔性器件/系统正沿着三个主要方向迅速发展,包括小型化、物理/人工智能的日益融合以及异构集成的适应性和能力增强。在这个新兴的研究领域存在着棘手的挑战,例如软机器人系统运动中的可控性相对较差、生物电子接口不匹配以及多参数传感中的信号耦合。凭借经过长期优化的材料、结构和工艺,天然生物体为应对这些挑战提供了丰富的灵感来源,从而能够设计和制造许多受生物启发的3D柔性器件/系统。在本综述中,我们聚焦于受生物启发的3D柔性器件和功能系统,并总结它们的代表性设计概念、制造方法、结构-功能关系原理以及广泛的应用。还对现有挑战、潜在解决方案和未来机遇进行了讨论,以推动进一步的研究工作,实现具有精确编程形状、增强的机械/电气性能以及高级物理/人工智能的受生物启发的3D柔性器件/系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8248/10833470/18b5fa540a3d/nwad314fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8248/10833470/652a371c9a50/nwad314fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8248/10833470/daf4fa068593/nwad314fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8248/10833470/c883168b9696/nwad314fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8248/10833470/ec125fa4221d/nwad314fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8248/10833470/a54c96b6da69/nwad314fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8248/10833470/1af17b7c0b5d/nwad314fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8248/10833470/e13cad7d0cea/nwad314fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8248/10833470/55aa0758a87d/nwad314fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8248/10833470/18b5fa540a3d/nwad314fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8248/10833470/652a371c9a50/nwad314fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8248/10833470/daf4fa068593/nwad314fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8248/10833470/c883168b9696/nwad314fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8248/10833470/ec125fa4221d/nwad314fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8248/10833470/a54c96b6da69/nwad314fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8248/10833470/1af17b7c0b5d/nwad314fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8248/10833470/e13cad7d0cea/nwad314fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8248/10833470/55aa0758a87d/nwad314fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8248/10833470/18b5fa540a3d/nwad314fig9.jpg

相似文献

[1]
Bioinspired 3D flexible devices and functional systems.

Natl Sci Rev. 2023-12-13

[2]
Materials, Structures, and Functions for Flexible and Stretchable Biomimetic Sensors.

Acc Chem Res. 2019-1-17

[3]
Special section on biomimetics of movement.

Bioinspir Biomim. 2011-12

[4]
Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions.

Acc Chem Res. 2022-6-7

[5]
Flexible Artificial Sensory Systems Based on Neuromorphic Devices.

ACS Nano. 2021-3-23

[6]
Recent Progress in Biomimetic Additive Manufacturing Technology: From Materials to Functional Structures.

Adv Mater. 2018-6-19

[7]
Latest Advances in Flexible Symmetric Supercapacitors: From Material Engineering to Wearable Applications.

Acc Chem Res. 2020-8-18

[8]
Bioinspired design and assembly of a multilayer cage-shaped sensor capable of multistage load bearing and collapse prevention.

Nanotechnology. 2021-4-9

[9]
Low-dimensional nanostructures for monolithic 3D-integrated flexible and stretchable electronics.

Chem Soc Rev. 2024-2-5

[10]
Artificial Neuron Devices.

Chem Rev. 2023-12-13

引用本文的文献

[1]
A soft, ultra-tough and multifunctional artificial muscle for volumetric muscle loss treatment.

Natl Sci Rev. 2024-11-22

本文引用的文献

[1]
Inversely engineered biomimetic flexible network scaffolds for soft tissue regeneration.

Sci Adv. 2023-9-29

[2]
Cold-programmed shape-morphing structures based on grayscale digital light processing 4D printing.

Nat Commun. 2023-9-8

[3]
Mechanically-Guided 3D Assembly for Architected Flexible Electronics.

Chem Rev. 2023-9-27

[4]
A microscale soft ionic power source modulates neuronal network activity.

Nature. 2023-8

[5]
High-stretchability and low-hysteresis strain sensors using origami-inspired 3D mesostructures.

Sci Adv. 2023-8-25

[6]
Frictionless multiphasic interface for near-ideal aero-elastic pressure sensing.

Nat Mater. 2023-11

[7]
Fibrous wearable and implantable bioelectronics.

Appl Phys Rev. 2023-9

[8]
Conformal in-ear bioelectronics for visual and auditory brain-computer interfaces.

Nat Commun. 2023-7-14

[9]
Better electronics from immiscibility.

Nat Mater. 2023-7

[10]
Pangolin-inspired untethered magnetic robot for on-demand biomedical heating applications.

Nat Commun. 2023-6-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索