Suppr超能文献

使用生态瞬时评估,随后进行自动个体时间序列分析,为癌症相关疲劳定制认知行为疗法:病例报告系列

Personalizing cognitive behavioral therapy for cancer-related fatigue using ecological momentary assessments followed by automated individual time series analyses: A case report series.

作者信息

Harnas Susan J, Knoop Hans, Booij Sanne H, Braamse Annemarie M J

机构信息

Amsterdam University Medical Centers, University of Amsterdam, Department of Medical Psychology, Cancer Center Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands.

University of Groningen, Faculty of Behavioural and Social Sciences, Department of Developmental Psychology, Groningen, the Netherlands.

出版信息

Internet Interv. 2021 Jul 14;25:100430. doi: 10.1016/j.invent.2021.100430. eCollection 2021 Sep.

Abstract

INTRODUCTION

A common approach to personalizing psychological interventions is the allocation of treatment modules to individual patients based on cut-off scores on questionnaires, which are mostly based on group studies. However, this way, intraindividual variation and temporal dynamics are not taken into account. Automated individual time series analyses are a possible solution, since these can identify the factors influencing the targeted symptom in a specific individual, and associated modules can be allocated accordingly. The aim of this study was to illustrate how automated individual time series analyses can be applied to personalize cognitive behavioral therapy for cancer-related fatigue in cancer survivors and how this procedure differs from allocating modules based on questionnaires.

METHODS

This study was a case report series ( = 3). Patients completed ecological momentary assessments at the start of therapy, and after three treatment modules (approximately 14 weeks). Assessments were analyzed with AutoVAR, an R package that automates the process of finding optimal vector autoregressive models. The results informed the treatment plan.

RESULTS

Three cases were described. From the ecological momentary assessments and automated time series analyses three individual treatment plans were constructed, in which the most important predictor for cancer-related fatigue was treated first. For two patients, this led to the treatment ending after the follow-up ecological momentary assessments. One patient continued treatment until six months, the standard treatment time in regular treatment. All three treatment plans differed from the treatment plans informed by questionnaire scores.

DISCUSSION

This study is one of the first to apply time series analyses in systematically personalizing psychological treatment. An important strength of this approach is that it can be used for every modular cognitive behavioral intervention where each treatment module addresses specific maintaining factors. Whether or not personalized CBT is more efficacious than standard, non-personalized CBT remains to be determined in controlled studies comparing it to usual care.

摘要

引言

个性化心理干预的一种常见方法是根据问卷中的截止分数为个体患者分配治疗模块,这些分数大多基于群体研究。然而,这样做没有考虑个体内部的变化和时间动态。自动个体时间序列分析是一种可能的解决方案,因为这些分析可以识别影响特定个体目标症状的因素,并据此分配相关模块。本研究的目的是说明如何将自动个体时间序列分析应用于为癌症幸存者的癌症相关疲劳个性化认知行为疗法,以及该程序与基于问卷分配模块有何不同。

方法

本研究是一个病例报告系列(n = 3)。患者在治疗开始时以及三个治疗模块后(约14周)完成生态瞬时评估。使用R包AutoVAR对评估进行分析,该包可自动完成寻找最优向量自回归模型的过程。结果为治疗计划提供了依据。

结果

描述了三个病例。根据生态瞬时评估和自动时间序列分析构建了三个个体治疗计划,其中首先治疗癌症相关疲劳的最重要预测因素。对于两名患者,这导致在后续生态瞬时评估后治疗结束。一名患者持续治疗至六个月,即常规治疗的标准治疗时间。所有三个治疗计划均与根据问卷分数制定的治疗计划不同。

讨论

本研究是最早将时间序列分析应用于系统地个性化心理治疗的研究之一。这种方法的一个重要优点是,它可用于每一种模块化认知行为干预,其中每个治疗模块都针对特定的维持因素。个性化认知行为疗法是否比标准的非个性化认知行为疗法更有效,仍有待在将其与常规护理进行比较的对照研究中确定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a751/8350606/f4ca3c2359d1/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验