Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States.
Center for Pharmaceutical Research and Innovation, College of Pharmacy and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States.
Inorg Chem. 2021 Oct 4;60(19):14582-14593. doi: 10.1021/acs.inorgchem.1c01517. Epub 2021 Aug 17.
Transition-metal-based approaches to selectively modify proteins hold promise in addressing challenges in chemical biology. Unique bioorthogonal chemistry can be achieved with preformed metal-based compounds; however, their utility in native protein sites within cells remain underdeveloped. Here, we tune the ancillary ligands of cyclometalated gold(III) as a reactive group, and the gold scaffold allows for rapid modification of a desired cysteine residue proximal to the ligand binding site of a target protein. Moreover, evidence for a ligand association mechanism toward C-S bond formation by X-crystallography is established. The observed reactivity of cyclometalated gold(III) enables the rational design of a cysteine-targeted covalent inhibitor of mutant KRAS. This work illustrates the potential of structure-activity relationship studies to tune kinetics of cysteine arylation and rational design of metal-mediated ligand affinity chemistry (MLAC) of native proteins.
基于过渡金属的方法有望用于选择性修饰蛋白质,以解决化学生物学中的挑战。通过预先形成的基于金属的化合物可以实现独特的生物正交化学;然而,它们在细胞内天然蛋白质位点的应用仍未得到充分发展。在这里,我们调整了金属化环丙烯的辅助配体作为反应基团,而金支架允许在靠近目标蛋白配体结合位点的所需半胱氨酸残基上快速进行修饰。此外,还通过 X 晶体学确定了配体与 C-S 键形成的关联机制的证据。观察到的金属化环丙烯金(III)的反应性使我们能够合理设计突变 KRAS 的半胱氨酸靶向共价抑制剂。这项工作说明了构效关系研究在调节半胱氨酸芳基化动力学和合理设计金属介导的天然蛋白质配体亲和力化学(MLAC)方面的潜力。