Suppr超能文献

基于旋转感知的自监督学习在有限训练样本下的 SAR 目标识别。

Rotation Awareness Based Self-Supervised Learning for SAR Target Recognition With Limited Training Samples.

出版信息

IEEE Trans Image Process. 2021;30:7266-7279. doi: 10.1109/TIP.2021.3104179. Epub 2021 Aug 20.

Abstract

The scattering signatures of a synthetic aperture radar (SAR) target image will be highly sensitive to different azimuth angles/poses, which aggravates the demand for training samples in learning-based SAR image automatic target recognition (ATR) algorithms, and makes SAR ATR a more challenging task. This paper develops a novel rotation awareness-based learning framework termed RotANet for SAR ATR under the condition of limited training samples. First, we propose an encoding scheme to characterize the rotational pattern of pose variations among intra-class targets. These targets will constitute several ordered sequences with different rotational patterns via permutations. By further exploiting the intrinsic relation constraints among these sequences as the supervision, we develop a novel self-supervised task which makes RotANet learn to predict the rotational pattern of a baseline sequence and then autonomously generalize this ability to the others without external supervision. Therefore, this task essentially contains a learning and self-validation process to achieve human-like rotation awareness, and it serves as a task-induced prior to regularize the learned feature domain of RotANet in conjunction with an individual target recognition task to improve the generalization ability of the features. Extensive experiments on moving and stationary target acquisition and recognition benchmark database demonstrate the effectiveness of our proposed framework. Compared with other state-of-the-art SAR ATR algorithms, RotANet will remarkably improve the recognition accuracy especially in the case of very limited training samples without performing any other data augmentation strategy.

摘要

合成孔径雷达 (SAR) 目标图像的散射特征对不同方位角/姿态高度敏感,这增加了基于学习的 SAR 图像自动目标识别 (ATR) 算法对训练样本的需求,使得 SAR ATR 成为一项更具挑战性的任务。本文提出了一种新的基于旋转感知的学习框架,称为 RotANet,用于有限训练样本条件下的 SAR ATR。首先,我们提出了一种编码方案,用于描述类内目标姿态变化的旋转模式。这些目标将通过排列构成几个具有不同旋转模式的有序序列。通过进一步利用这些序列之间的内在关系约束作为监督,我们开发了一种新的自监督任务,使 RotANet 学习预测基线序列的旋转模式,然后自主地将这种能力推广到其他序列,而无需外部监督。因此,这项任务本质上包含了一个学习和自我验证的过程,以实现类似于人类的旋转感知,并作为一种任务诱导的先验,与单个目标识别任务相结合,正则化 RotANet 学习到的特征域,以提高特征的泛化能力。在运动和静止目标获取和识别基准数据库上的广泛实验表明了我们提出的框架的有效性。与其他最先进的 SAR ATR 算法相比,RotANet 将显著提高识别精度,尤其是在非常有限的训练样本情况下,而无需执行任何其他数据增强策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验