Suppr超能文献

基于训练数据增强的深度学习实现合成孔径雷达图像目标识别

Target Recognition in SAR Images by Deep Learning with Training Data Augmentation.

作者信息

Geng Zhe, Xu Ying, Wang Bei-Ning, Yu Xiang, Zhu Dai-Yin, Zhang Gong

机构信息

Key Laboratory of Radar Imaging and Microwave Photonics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.

School of Computer Engineering, Nanjing Institute of Technology, Nanjing 211167, China.

出版信息

Sensors (Basel). 2023 Jan 13;23(2):941. doi: 10.3390/s23020941.

Abstract

Mass production of high-quality synthetic SAR training imagery is essential for boosting the performance of deep-learning (DL)-based SAR automatic target recognition (ATR) algorithms in an open-world environment. To address this problem, we exploit both the widely used Moving and Stationary Target Acquisition and Recognition (MSTAR) SAR dataset and the Synthetic and Measured Paired Labeled Experiment (SAMPLE) dataset, which consists of selected samples from the MSTAR dataset and their computer-generated synthetic counterparts. A series of data augmentation experiments are carried out. First, the sparsity of the scattering centers of the targets is exploited for new target pose synthesis. Additionally, training data with various clutter backgrounds are synthesized via clutter transfer, so that the neural networks are better prepared to cope with background changes in the test samples. To effectively augment the synthetic SAR imagery in the SAMPLE dataset, a novel contrast-based data augmentation technique is proposed. To improve the robustness of neural networks against out-of-distribution (OOD) samples, the SAR images of ground military vehicles collected by the self-developed MiniSAR system are used as the training data for the adversarial outlier exposure procedure. Simulation results show that the proposed data augmentation methods are effective in improving both the target classification accuracy and the OOD detection performance. The purpose of this work is to establish the foundation for large-scale, open-field implementation of DL-based SAR-ATR systems, which is not only of great value in the sense of theoretical research, but is also potentially meaningful in the aspect of military application.

摘要

在开放世界环境中,高质量合成SAR训练图像的大规模生产对于提升基于深度学习(DL)的SAR自动目标识别(ATR)算法的性能至关重要。为解决这一问题,我们利用了广泛使用的移动与静止目标获取与识别(MSTAR)SAR数据集以及合成与实测配对标注实验(SAMPLE)数据集,后者由从MSTAR数据集中选取的样本及其计算机生成的合成对应样本组成。开展了一系列数据增强实验。首先,利用目标散射中心的稀疏性进行新的目标姿态合成。此外,通过杂波转移合成具有各种杂波背景的训练数据,以便神经网络更好地准备应对测试样本中的背景变化。为有效增强SAMPLE数据集中的合成SAR图像,提出了一种基于对比度的新型数据增强技术。为提高神经网络对分布外(OOD)样本的鲁棒性,将自主研发的MiniSAR系统采集的地面军事车辆SAR图像用作对抗性离群值暴露过程的训练数据。仿真结果表明,所提出的数据增强方法在提高目标分类准确率和OOD检测性能方面均有效。这项工作的目的是为基于DL的SAR-ATR系统的大规模、开放场景实施奠定基础,这不仅在理论研究方面具有重要价值,而且在军事应用方面也具有潜在意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/298f/9863010/8ad2ed1ade90/sensors-23-00941-g011.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验