Suppr超能文献

Widar3.0:利用 Wi-Fi 实现零开销的跨域手势识别。

Widar3.0: Zero-Effort Cross-Domain Gesture Recognition With Wi-Fi.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2022 Nov;44(11):8671-8688. doi: 10.1109/TPAMI.2021.3105387. Epub 2022 Oct 4.

Abstract

With the development of signal processing technology, the ubiquitous Wi-Fi devices open an unprecedented opportunity to solve the challenging human gesture recognition problem by learning motion representations from wireless signals. Wi-Fi-based gesture recognition systems, although yield good performance on specific data domains, are still practically difficult to be used without explicit adaptation efforts to new domains. Various pioneering approaches have been proposed to resolve this contradiction but extra training efforts are still necessary for either data collection or model re-training when new data domains appear. To advance cross-domain recognition and achieve fully zero-effort recognition, we propose Widar3.0, a Wi-Fi-based zero-effort cross-domain gesture recognition system. The key insight of Widar3.0 is to derive and extract domain-independent features of human gestures at the lower signal level, which represent unique kinetic characteristics of gestures and are irrespective of domains. On this basis, we develop a one-fits-all general model that requires only one-time training but can adapt to different data domains. Experiments on various domain factors (i.e. environments, locations, and orientations of persons) demonstrate the accuracy of 92.7% for in-domain recognition and 82.6%-92.4% for cross-domain recognition without model re-training, outperforming the state-of-the-art solutions.

摘要

随着信号处理技术的发展,无处不在的 Wi-Fi 设备为通过从无线信号中学习运动表示来解决具有挑战性的人体手势识别问题提供了前所未有的机会。基于 Wi-Fi 的手势识别系统虽然在特定数据领域表现出良好的性能,但在没有明确的新领域适应措施的情况下,实际上很难使用。已经提出了各种开创性的方法来解决这一矛盾,但当新的数据领域出现时,无论是数据收集还是模型重新训练,都需要额外的训练工作。为了推进跨域识别并实现完全零努力识别,我们提出了 Widar3.0,这是一种基于 Wi-Fi 的零努力跨域手势识别系统。Widar3.0 的关键见解是在较低的信号级别上得出和提取人类手势的与域无关的特征,这些特征代表手势的独特动力学特征,与域无关。在此基础上,我们开发了一种适用于所有情况的通用模型,只需一次性训练,但可以适应不同的数据领域。在各种域因素(即人员的环境、位置和方向)上的实验表明,在域内识别的准确率为 92.7%,在无需模型重新训练的情况下跨域识别的准确率为 82.6%-92.4%,优于最先进的解决方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验