Finzel Kati
Technische Universität Dresden, Bergstrasse 66c, Dresden 01069, Germany.
J Chem Theory Comput. 2021 Nov 9;17(11):6832-6840. doi: 10.1021/acs.jctc.1c00435. Epub 2021 Aug 19.
This work presents a new method how to obtain approximate analytical solutions for the Euler equation for second-row homonuclear dimers. In contrast to the well-known Kohn-Sham method where a system of N nonlinear coupled differential equations must be solved iteratively, orbital-free density functional theory allows to access the minimizing electron density directly via the Euler equation. For simplified models, here, an atom-centered monopole expansion with one free parameter, solutions of the electron density can be obtained analytically by solving the Euler equation at the bond critical point. The procedure is exemplarily carried out for N, C, and B, yielding bound molecules with an internuclear distance of 2.01, 2.43, and 3.07 bohr, respectively.
这项工作提出了一种新方法,用于获得第二行同核二聚体的欧拉方程的近似解析解。与著名的科恩-沙姆方法不同,在科恩-沙姆方法中,一个由N个非线性耦合微分方程组成的系统必须通过迭代求解,而无轨道密度泛函理论允许通过欧拉方程直接获得使电子密度最小化的解。对于简化模型,这里采用具有一个自由参数的以原子为中心的单极展开,通过在键临界点求解欧拉方程,可以解析地得到电子密度的解。该过程以N、C和B为例进行,分别得到核间距为2.01、2.43和3.07玻尔的束缚分子。