Department of Biomedicine, Aarhus University, 8000 Aarhus C., Denmark.
Division of Hematology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria.
Genome Res. 2021 Nov;31(11):2120-2130. doi: 10.1101/gr.275607.121. Epub 2021 Aug 18.
Targeted transcriptional activation or interference can be induced with the CRISPR-Cas9 system (CRISPRa/CRISPRi) using nuclease-deactivated Cas9 fused to transcriptional effector molecules. These technologies have been used in cancer cell lines, particularly for genome-wide functional genetic screens using lentiviral vectors. However, CRISPRa and CRISPRi have not yet been widely applied to ex vivo cultured primary cells with therapeutic relevance owing to a lack of effective and nontoxic delivery modalities. Here we develop CRISPRa and CRISPRi platforms based on RNA or ribonucleoprotein (RNP) delivery by electroporation and show transient, programmable gene regulation in primary cells, including human CD34 hematopoietic stem and progenitor cells (HSPCs) and human CD3 T cells. We show multiplex and orthogonal gene modulation using multiple sgRNAs and CRISPR systems from different bacterial species, and we show that CRISPRa can be applied to manipulate differentiation trajectories of HSPCs. These platforms constitute simple and effective means to transiently control transcription and are easily adopted and reprogrammed to new target genes by synthetic sgRNAs. We believe these technologies will find wide use in engineering the transcriptome for studies of stem cell biology and gene function, and we foresee that they will be implemented to develop and enhance cellular therapeutics.
使用与转录效应分子融合的失活核酸酶 Cas9 的 CRISPR-Cas9 系统(CRISPRa/CRISPRi)可诱导靶向转录激活或干扰。这些技术已在癌细胞系中得到应用,特别是在使用慢病毒载体进行全基因组功能遗传筛选方面。然而,由于缺乏有效和无毒的递送方式,CRISPRa 和 CRISPRi 尚未广泛应用于具有治疗意义的离体培养原代细胞。在这里,我们通过电穿孔开发了基于 RNA 或核糖核蛋白 (RNP) 递送的 CRISPRa 和 CRISPRi 平台,并在原代细胞(包括人 CD34 造血干细胞和祖细胞 (HSPC) 和人 CD3 T 细胞)中展示了瞬时、可编程的基因调控。我们展示了使用多个 sgRNA 和来自不同细菌物种的 CRISPR 系统进行的多路和正交基因调节,并且我们表明 CRISPRa 可用于操纵 HSPCs 的分化轨迹。这些平台构成了瞬时控制转录的简单有效手段,并且可以通过合成 sgRNA 轻松采用和重新编程到新的靶基因。我们相信这些技术将在工程转录组以研究干细胞生物学和基因功能方面得到广泛应用,并且我们预计它们将被实施以开发和增强细胞治疗。