Zhang Aonan, Zhan Hao, Liao Junjie, Zheng Kaimin, Jiang Tao, Mi Minghao, Yao Penghui, Zhang Lijian
National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation (Ministry of Education) and College of Engineering and Applied Sciences, Nanjing University, 210093, Nanjing, China.
Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China.
Light Sci Appl. 2021 Aug 18;10(1):169. doi: 10.1038/s41377-021-00608-4.
Quantum computing is seeking to realize hardware-optimized algorithms for application-related computational tasks. NP (nondeterministic-polynomial-time) is a complexity class containing many important but intractable problems like the satisfiability of potentially conflict constraints (SAT). According to the well-founded exponential time hypothesis, verifying an SAT instance of size n requires generally the complete solution in an O(n)-bit proof. In contrast, quantum verification algorithms, which encode the solution into quantum bits rather than classical bit strings, can perform the verification task with quadratically reduced information about the solution in [Formula: see text] qubits. Here we realize the quantum verification machine of SAT with single photons and linear optics. By using tunable optical setups, we efficiently verify satisfiable and unsatisfiable SAT instances and achieve a clear completeness-soundness gap even in the presence of experimental imperfections. The protocol requires only unentangled photons, linear operations on multiple modes and at most two-photon joint measurements. These features make the protocol suitable for photonic realization and scalable to large problem sizes with the advances in high-dimensional quantum information manipulation and large scale linear-optical systems. Our results open an essentially new route toward quantum advantages and extend the computational capability of optical quantum computing.
量子计算正在寻求实现针对与应用相关的计算任务的硬件优化算法。NP(非确定性多项式时间)是一个复杂度类,包含许多重要但棘手的问题,如潜在冲突约束的可满足性(SAT)。根据有充分依据的指数时间假设,验证一个规模为n的SAT实例通常需要在一个O(n)位证明中的完整解决方案。相比之下,量子验证算法将解决方案编码到量子比特而不是经典比特串中,可以在[公式:见正文]量子比特中以二次方减少的关于解决方案的信息来执行验证任务。在这里,我们用单光子和线性光学实现了SAT的量子验证机器。通过使用可调谐光学装置,我们有效地验证了可满足和不可满足的SAT实例,即使在存在实验缺陷的情况下也实现了明显的完备性-可靠性差距。该协议仅需要非纠缠光子、多模式上的线性操作以及至多双光子联合测量。这些特性使得该协议适用于光子实现,并且随着高维量子信息操纵和大规模线性光学系统的发展可扩展到大规模问题。我们的结果为实现量子优势开辟了一条全新的途径,并扩展了光学量子计算的计算能力。