Zippusch Sarah, Besecke Karen F W, Helms Florian, Klingenberg Melanie, Lyons Anne, Behrens Peter, Haverich Axel, Wilhelmi Mathias, Ehlert Nina, Böer Ulrike
Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany.
Division for Cardiac, Thoracic-, Transplantation- and Vascular Surgery, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany.
Regen Biomater. 2021 Aug 14;8(5):rbab039. doi: 10.1093/rb/rbab039. eCollection 2021 Oct.
Inadequate vascularization leading to insufficient oxygen and nutrient supply in deeper layers of bioartificial tissues remains a limitation in current tissue engineering approaches to which pre-vascularization offers a promising solution. Hypoxia triggering pre-vascularization by enhanced vascular endothelial growth factor (VEGF) expression can be induced chemically by dimethyloxalylglycine (DMOG). Nanoporous silica nanoparticles (NPSNPs, or mesoporous silica nanoparticles, MSNs) enable sustained delivery of molecules and potentially release DMOG allowing a durable capillarization of a construct. Here we evaluated the effects of soluble DMOG and DMOG-loaded NPSNPs on VEGF secretion of adipose tissue-derived stem cells (ASC) and on tube formation by human umbilical vein endothelial cells (HUVEC)-ASC co-cultures. Repeated doses of 100 µM and 500 µM soluble DMOG on ASC resulted in 3- to 7-fold increased VEGF levels on day 9 ( < 0.0001). Same doses of DMOG-NPSNPs enhanced VEGF secretion 7.7-fold ( < 0.0001) which could be maintained until day 12 with 500 µM DMOG-NPSNPs. In fibrin-based tube formation assays, 100 µM DMOG-NPSNPs had inhibitory effects whereas 50 µM significantly increased tube length, area and number of junctions transiently for 4 days. Thus, DMOG-NPSNPs supported endothelial tube formation by upregulated VEGF secretion from ASC and thus display a promising tool for pre-vascularization of tissue-engineered constructs. Further studies will evaluate their effect in hydrogels under perfusion.
在当前的组织工程方法中,生物人工组织深层血管化不足导致氧气和营养供应不足仍然是一个限制因素,而预血管化提供了一个有前景的解决方案。通过增强血管内皮生长因子(VEGF)表达触发预血管化的缺氧状态可由二甲基草酰甘氨酸(DMOG)化学诱导。纳米多孔二氧化硅纳米颗粒(NPSNPs,或介孔二氧化硅纳米颗粒,MSNs)能够持续递送分子,并可能释放DMOG,从而使构建体实现持久的毛细血管化。在此,我们评估了可溶性DMOG和负载DMOG的NPSNPs对脂肪组织来源干细胞(ASC)的VEGF分泌以及人脐静脉内皮细胞(HUVEC)-ASC共培养物形成血管的影响。对ASC重复给予100μM和500μM可溶性DMOG,在第9天导致VEGF水平增加3至7倍(<0.0001)。相同剂量的DMOG-NPSNPs使VEGF分泌增加7.7倍(<0.0001),使用500μM DMOG-NPSNPs时这种增加可持续到第12天。在基于纤维蛋白的血管形成试验中,100μM DMOG-NPSNPs具有抑制作用,而50μM在4天内可使血管长度、面积和连接点数量短暂显著增加。因此,DMOG-NPSNPs通过上调ASC的VEGF分泌来支持内皮血管形成,从而显示出用于组织工程构建体预血管化的有前景工具。进一步的研究将评估它们在灌注水凝胶中的作用。