Suppr超能文献

基于框架核酸的血管内皮生长因子信号激活系统用于血管生成:一种双重刺激策略。

Framework Nucleic Acids-Based VEGF Signaling Activating System for Angiogenesis: A Dual Stimulation Strategy.

机构信息

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.

Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan, 610041, P. R. China.

出版信息

Adv Sci (Weinh). 2024 Jun;11(21):e2308701. doi: 10.1002/advs.202308701. Epub 2024 Mar 9.

Abstract

Angiogenesis is crucial for tissue engineering, wound healing, and regenerative medicine. Nanomaterials constructed based on specific goals can be employed to activate endogenous growth factor-related signaling. In this study, based on the conventional single-stranded DNA self-assembly into tetrahedral framework nucleic acids (tFNAs), the Apt02 nucleic acid aptamer and dimethyloxallyl glycine (DMOG) small molecule are integrated into a complex via a template-based click chemistry reaction and toehold-mediated strand displacement reaction. Thus, being able to simulate the VEGF (vascular endothelial growth factor) function and stabilize HIF (hypoxia-inducible factor), a functional whole is constructed and applied to angiogenesis. Cellular studies demonstrate that the tFNAs-Apt02 complex (TAC) has a conspicuous affinity to human umbilical vein endothelial cells (HUVECs). Further incubation with DMOG yields the tFNAs-Apt02-DMOG complex (TACD), which promotes VEGF secretion, in vitro blood vessel formation, sprouting, and migration of HUVECs. Additionally, TACD enhances angiogenesis by upregulating the VEGF/VEGFR and HIF signaling pathways. Moreover, in a diabetic mouse skin defect repair process, TACD increases blood vessel formation and collagen deposition, therefore accelerating wound healing. The novel strategy simulating VEGF and stabilizing HIF promotes blood-vessel formation in vivo and in vitro and has the potential for broad applications in the vascularization field.

摘要

血管生成对于组织工程、伤口愈合和再生医学至关重要。基于特定目标构建的纳米材料可用于激活内源性生长因子相关信号通路。在本研究中,基于常规的单链 DNA 自组装成四面体框架核酸(tFNAs),将 Apt02 核酸适体和二甲基草酰甘氨酸(DMOG)小分子通过基于模板的点击化学反应和链置换反应整合到复合物中。因此,能够模拟 VEGF(血管内皮生长因子)的功能并稳定 HIF(缺氧诱导因子),构建并应用于血管生成。细胞研究表明,tFNAs-Apt02 复合物(TAC)与人脐静脉内皮细胞(HUVECs)具有显著的亲和力。进一步用 DMOG 孵育得到 tFNAs-Apt02-DMOG 复合物(TACD),促进了 VEGF 的分泌,体外血管形成、发芽和 HUVECs 的迁移。此外,TACD 通过上调 VEGF/VEGFR 和 HIF 信号通路促进血管生成。此外,在糖尿病小鼠皮肤缺损修复过程中,TACD 增加了血管形成和胶原蛋白沉积,从而加速了伤口愈合。该模拟 VEGF 和稳定 HIF 的新策略促进了体内和体外的血管生成,有望在血管化领域得到广泛应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eddf/11151028/6fc86c64bd26/ADVS-11-2308701-g006.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验